当前位置: 首页 > 中考 > 三轮冲刺 > 中考数学冲刺——几何压轴2(31-40)

中考数学冲刺——几何压轴2(31-40)

pdf 2022-02-26 15:14:20 21页
剩余11页未读,查看更多需下载
春中考冲刺讲师:小鞠老师,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师31.如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90°得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为————————.(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,AB=3DE,QC=1,请直接写出线段BP的长.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师【解答】解:(1)BP+QC=EC;理由如下:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,由旋转的性质得:∠PEG=90°,EG=EP,∴∠PEQ+∠GEH=90°,∵QH⊥GD,∴∠H=90°,∠G+∠GEH=90°,∴∠PEQ=∠G,又∵∠EPQ+∠PEC=90°,∠PEC+∠GED=90°,∴∠EPQ=∠GED,在△PEQ和△EGD中,,∴△PEQ≌△EGD(ASA),∴PQ=ED,∴BP+QC=BC﹣PQ=CD﹣ED=EC,即BP+QC=EC;故答案为:BP+QC=EC;(2)(1)中的结论仍然成立,理由如下:由题意得:∠PEG=90°,EG=EP,∴∠PEQ+∠GEH=90°,∵QH⊥GD,∴∠H=90°,∠G+∠GEH=90°,∴∠PEQ=∠G,∵四边形ABCD是正方形,∴∠DCB=90°,BC=DC,∴∠EPQ+∠PEC=90°,∵∠PEC+∠GED=90°,∴∠GED=∠EPQ,在△PEQ和△EGD中,,∴△PEQ≌△EGD(ASA),∴PQ=ED,∴BP+QC=BC﹣PQ=CD﹣ED=EC,即BP+QC=EC;(3)线段BP的长为3或5.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师32.如图,矩形ABCD中,AB=2,AD=4.E,F分别在AD,BC上,点A与点C关于EF所在的直线对称,P是边DC上的一动点.(1)连接AF,CE,求证四边形AFCE是菱形;(2)当△PEF的周长最小时,求的值;(3)连接BP交EF于点M,当∠EMP=45°时,求CP的长.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师【解答】证明:(1)如图:连接AF,CE,AC交EF于点O∵四边形ABCD是矩形,∴AB=CD,AD=BC,AD∥BC∴∠AEO=∠CFO,∠EAO=∠FCO,∵点A与点C关于EF所在的直线对称∴AO=CO,AC⊥EF∵∠AEO=∠CFO,∠EAO=∠FCO,AO=CO∴△AEO≌△CFO(AAS)∴AE=CF,且AE∥CF∴四边形AFCE是平行四边形,且AC⊥EF∴四边形AFCE是菱形;(2)如图,作点F关于CD的对称点H,连接EH,交CD于点P,此时△EFP的周长最小,∵四边形AFCE是菱形∴AF=CF=CE=AE,∵AF2=BF2+AB2,∴AF2=(4﹣AF)2+4,∴AF=∴AE==CF∴DE=∵点F,点H关于CD对称∴CF=CH=∵AD∥BC∴=(3)如图,延长EF,延长AB交于点N,过点E作EH⊥BC于H,交BP于点G,过点O作BO⊥FN于点O,CP=,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师33.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师【解答】(1)证明:①∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵∠CDF+∠ADC=90°,∴∠CAD=∠CDF;②作FH⊥BC交BC的延长线于H,则四边形FECH为矩形,∴CH=EF,在△ACD和△DHF中,,∴△ACD≌△DHF(AAS)∴DH=AC,∵AC=CB,∴DH=CB,∴DH﹣CD=CB﹣CD,即HG=BD,∴BD=EF;(2)BD=EF,理由如下:作FG⊥BC交BC的延长线于G,∵∠CAD=∠GDF,∠ACD=∠DGF=90°,∴△ACD∽△DGF,∴===2,即DG=2AC,GF=2CD,∵BC=2AC,CE=2CD,∴BC=DG,GF=CE,∴BD=CG,∵GF∥CE,GF=CE,∠G=90°,∴四边形FECG为矩形,∴CG=EF,∴BD=EF.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师34.如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师35.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师【解答】证明:(1)∵对角线AC的中点为O∴AO=CO,且AG=CH∴GO=HO∵四边形ABCD是矩形∴AD=BC,CD=AB,CD∥AB∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA∴△COF≌△AOE(ASA)∴FO=EO,且GO=HO∴四边形EHFG是平行四边形;(2)如图,连接CE∵∠α=90°,∴EF⊥AC,且AO=CO∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9﹣AE)2+9,∴AE=5,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师36.如图,AB是⊙O的直径,弦AC与BD交于点E,且AC=BD,连接AD,BC.(1)求证:△ADB≌△BCA;(2)若OD⊥AC,AB=4,求弦AC的长;(3)在(2)的条件下,延长AB至点P,使BP=2,连接PC.求证:PC是⊙O的切线.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵AB=AB,∴△ADB≌△BCA(HL);(2)解:如图,连接DC,∵OD⊥AC,∴,∴AD=DC,∵△ADB≌△BCA,∴AD=BC,∴AD=DC=BC,∴∠AOD=∠ABC=60°,∵AB=4,∴;(3)证明:如图,连接OC,∵BC=BP=2∴∠BCP=∠P,∵∠ABC=60°,∴∠BCP=30°,∵OC=OB,∠ABC=60°,∴△OBC是等边三角形,∴∠OCB=60°,∴∠OCP=∠OCB+∠BCP=60°+30°=90°,∴OC⊥PC,∴PC是⊙O的切线.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师37.(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师【解答】解:(1)如图所示:(2)依题意有=,解得m1=,m2=(负值舍去),经检验,m1=是原方程的解.故m的值是;(3)∵≠,∴直角三角形的斜边与直角梯形的斜腰不在一条直线上,故重新拼成的图形的面积会增加.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师38.如图,在△ABC中.∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠BCP=∠BAC.(1)求证:CP是⊙O的切线;(2)若BC=3,cos∠BCP=,求点B到AC的距离.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师【解答】解:(1)连接AN,则AN⊥BC,∵∠ABC=∠ACB,∴△ABC为等腰三角形,∴∠BAN=CAN∠=α=BAC=∠BCP,∠NAC+∠NCA=90°,即α+∠ACB=90°,∴CP是⊙O的切线;(2)∵△ABC为等腰三角形,∴NC=BC=,cos∠BCP==cosα,则tanα=,在△ACN中,AN==,同理AC=,设:点B到AC的距离为h,则S△ABC=AN×BC=AC•h,即:×3=h,解得:h=,故点B到AC的距离为.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师39.(1)【探究发现】如图1,∠EOF的顶点O在正方形ABCD两条对角线的交点处,∠EOF=90°,将∠EOF绕点O旋转,旋转过程中,∠EOF的两边分别与正方形ABCD的边BC和CD交于点E和点F(点F与点C,D不重合).则CE,CF,BC之间满足的数量关系是CE+CF=BC.(2)【类比应用】如图2,若将(1)中的“正方形ABCD”改为“∠BCD=120°的菱形ABCD”,其他条件不变,当∠EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.(3)【拓展延伸】如图3,∠BOD=120°,OD=,OB=4,OA平分∠BOD,AB=,且OB>2OA,点C是OB上一点,∠CAD=60°,求OC的长.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师【解答】解:(1)如图1中,结论:CE+CF=BC.理由如下:∵四边形ABCD是正方形,∴AC⊥BD,OB=OC,∠OBE=∠OCF=45°,∵∠EOF=∠BOC=90°,∴∠BOE=∠OCF,∴△BOE≌△COF(ASA),∴BE=CF,∴CE+CF=CE+BE=BC.故答案为CE+CF=BC.(2)如图2中,结论不成立.CE+CF=BC.理由:连接EF,在CO上截取CJ=CF,连接FJ.∵四边形ABCD是菱形,∠BCD=120°,∴∠BCO=∠OCF=60°,∵∠EOF+∠ECF=180°,∴O,E,C,F四点共圆,∴∠OFE=∠OCE=60°,∵∠EOF=60°,∴△EOF是等边三角形,∴OF=FE,∠OFE=60°,∵CF=CJ,∠FCJ=60°,∴△CFJ是等边三角形,∴FC=FJ,∠EFC=∠OFE=60°,∴∠OFJ=∠CFE,∴△OFJ≌△EFC(SAS),∴OJ=CE,∴CF+CE=CJ+OJ=OC=BC,(3)如图3中,由OB>2OA可知△BAO是钝角三角形,∠BAO>90°,作AH⊥OB于H,设OH=x.在Rt△ABH中,BH=,∵OB=4,∴+x=4,解得x=或,∴OH=或,∴OA=2OH=1或3(舍弃),∵∠COD+∠ACD=180°,∴A,C,O,D四点共圆,∵OA平分∠COD,∴∠AOC=∠AOD=60°,∴∠ADC=∠AOC=60°,∵∠CAD=60°,∴△ACD是等边三角形,由(2)可知:OC+OD=OA,∴OC=1﹣=.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师40.如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD=5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.,初三中考冲刺系列中考几何压轴2(#31-40)思考让我快乐讲师:小鞠老师【解答】解:(1)如图一(1)中,∵四边形ABCD是矩形,∴∠ADC=90°,∵tan∠DAC===,∴∠DAC=30°.(2)①如图一(1)中,当AN=NM时,∵∠BAN=∠BMN=90°,BN=BN,AN=NM,∴Rt△BNA≌Rt△BNM(HL),∴BA=BM,在Rt△ABC中,∵∠ACB=∠DAC=30°,AB=CD=5,∴AC=2AB=10,∵∠BAM=60°,BA=BM,∴△ABM是等边三角形,∴AM=AB=5,∴CM=AC﹣AM=5.如图一(2)中,当AN=AM时,易证∠AMN=∠ANM=15°,∵∠BMN=90°,∴∠CMB=75°,∵∠MCB=30°,∴∠CBM=180°﹣75°﹣30°=75°,∴∠CMB=∠CBM,∴CM=CB=5,综上所述,满足条件的CM的值为5或5.②结论:∠MBN=30°大小不变.理由:如图一(1)中,∵∠BAN+∠BMN=180°,∴A,B,M,N四点共圆,∴∠MBN=∠MAN=30°.如图一(2)中,∵∠BMN=∠BAN=90°,∴A,N,B,M四点共圆,∴∠MBN+∠MAN=180°,∵∠DAC+∠MAN=180°,∴∠MBN=∠DAC=30°,综上所述,∠MBN=30°.(3)如图二中,FH=.

相关推荐