当前位置: 首页 > 高考 > 历年真题 > 数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)解析版

数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)解析版

docx 2023-07-06 11:15:01 7页
剩余5页未读,查看更多需下载
数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)一、解答题1.已知{an}为等差数列,{bn}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|bk=am+a1,1≤m≤500}中元素个数.【答案】(1)证明:设数列{an}的公差为d,所以,a1+d−2b1=a1+2d−4b1a1+d−2b1=8b1−(a1+3d),即可解得,b1=a1=d2,所以原命题得证.(2)解:由(1)知d=2b1=2a1,由bk=am+a1知:b1⋅2k−1=a1+(m−1)⋅d+a1即b1⋅2k−1=b1+(m−1)⋅2b1+b1,即2k−1=2m,因为1⩽m⩽500,故2⩽2k−1⩽1000,解得2⩽k⩽10故集合{k∣bk=am+a1,1⩽m⩽500}中元素的个数为9个.【知识点】集合中元素个数的最值;等差数列;等比数列【解析】【分析】(1)设数列{an}的公差为d,根据题意列出方程组即可证出;(2)根据题意化简可得m=2k−2,即可解出.2.记Sn为数列{an}的前n项和.已知2Snn+n=2an+1.(1)证明:{an}是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.【答案】(1)已知2Snn+n=2an+1,即2Sn+n2=2nan+n①,当n≥2时,2Sn−1+(n−1)2=2(n−1)an−1+(n−1)②,①-②得,2Sn+n2−2Sn−1−(n−1)2=2nan+n−2(n−1)an−1−(n−1),即2an+2n−1=2nan−2(n−1)an−1+1,即2(n−1)an−2(n−1)an−1=2(n−1),所以an−an−1=1,n≥2且n∈N*,所以{an}是以1为公差的等差数列.(2)由(1)中an−an−1=1可得,a4=a1+3,a7=a1+6,ΔABC,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即(a1+6)2=(a1+3)⋅(a1+8),解得a1=−12,所以an=n−13,所以Sn=−12n+n(n−1)2=12n2−252n=12(n−252)2−6258,所以,当n=12或n=13时(Sn)min=−78.【知识点】等差数列;等差数列的前n项和;等比数列的性质;数列递推式【解析】【分析】(1)依题意可得2Sn+n2=2nan+n,根据an=S1,n=1Sn-Sn-1,n≥2,作差即可得到an−an−1=1,从而得证;(2)由(1)及等比中项的性质求出a1,即可得到{an}的通项公式与前n项和,再根据二次函数的性质计算可得.3.记Sn为数列{an}的前n项和,已知a1=1,{Snan}是公差为13,的等差数列.(1)求{an}的通项公式;(2)证明:1a1+1a2+⋯+1an<2【答案】(1)因为{Snan}是公差为13的等差数列,而S1a1=1,所以Snan=S1a1+(n−1)d=1+13(n−1)⇒Sn=(13n+23)an①n≥2时,Sn−1=(13n+13)an−1②①-②有:anan−1=n+1n−1,n≥2.所以a2a1=31,a3a2=42,⋯,anan−1=n+1n−1,以上式子相乘,得an=n(n+1)2,n≥2经检验,n=1时,a1=1,符合.所以an=n(n+1)2.(2)由(1)知an=n(n+1)2所以1an=2n(n+1)=2(1n−1n+1)所以1a1+1a2+⋯+1an=2(1−12+12−13+⋯+1n−1n+1)=2−2n+1因为n∈N*,所以2n+1>0,所以2−2n+1<2,即1a1+1a2+⋯+1an<2.【知识点】数列的概念及简单表示法;等差数列的通项公式;数列的求和;数列递推式;数列与不等式的综合【解析】【分析】(1)根据等差数列的通项公式可得Sn=(13n+23)an,由利用Sn与an的关系,得anan−1=n+1n−1n,再利用累积法,可得an;(2)由(1)得1an=2(1n−1n+1),利用裂项相消求和求得1a1+1a2+⋯+1an=2−2n+1,再解不等式即可.4.记Sn是公差不为0的等差数列{an}的前n项和,若a3=S5,a2a4=S4.(1)求数列{an}的通项公式an;(2)求使Sn>an成立的n的最小值.【答案】(1)由等差数列的性质可得:S5=5a3,则:a3=5a3,∴a3=0,设等差数列的公差为d,从而有:a2a4=(a3−d)(a3+d)=−d2,S4=a1+a2+a3+a4=(a3−2d)+(a3−d)+a3+(a3−d)=−2d,从而:−d2=−2d,由于公差不为零,故:d=2,数列的通项公式为:an=a3+(n−3)d=2n−6.(2)由数列的通项公式可得:a1=2−6=−4,则:Sn=n×(−4)+n(n−1)2×2=n2−6n,则不等式Sn>an即:n2−5n>2n−6,整理可得:(n−1)(n−6)>0,解得:n<1或n>6,又n为正整数,故n的最小值为7.【知识点】二次函数在闭区间上的最值;等差数列的通项公式;等差数列的前n项和;等差数列的性质【解析】【分析】(1)根据等差数列的通项公式及性质直接求解即可;(2)首先求得前n项和的表达式,然后求解二次不等式即可确定n的最小值.5.设{an}是首项为1的等比数列,数列{bn}满足bn=nan3,已知a1,3a2,9a3成等差数列.(1)求{an}和{bn}的通项公式;(2)记Sn和Tn分别为{an}和{bn}的前n项和.证明:Tn<Sn2.【答案】(1)因为{an}是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2−6q+1=0,解得q=13,所以an=(13)n−1,所以bn=nan3=n3n.(2)证明:由(1)可得Sn=1×(1−13n)1−13=32(1−13n),Tn=13+232+⋯+n−13n−1+n3n,①13Tn=132+233+⋯+n−13n+n3n+1,②①−②得23Tn=13+132+133+⋯+13n−n3n+1=13(1−13n)1−13−n3n+1=12(1−13n)−n3n+1,所以Tn=34(1−13n)−n2⋅3n,所以Tn−Sn2=34(1−13n)−n2⋅3n−34(1−13n)=−n2⋅3n<0,所以Tn<Sn2.【知识点】等差数列的通项公式;等比数列的通项公式;数列的求和【解析】【分析】由a1,3a2,9a3成等差数列,列关系式等比数列{an}的公比q,进而得到an,再由bn与an的关系求得bn;(2)先根据条件求得Sn,再由错项相减的方法求得Tn的表达式,最后用求差比较法,证明Tn<Sn2.6.记Sn为{an}的前n项和,已知an>0,a2=3a1,且数列{Sn}是等差数列.证明:{an}是等差数列.【答案】∵数列{Sn}是等差数列,设公差为d=S2−S1=a2+a1−a1=a1∴Sn=a1+(n−1)a1=na1,(n∈N∗)∴Sn=a1n2,(n∈N∗)∴当n≥2时,an=Sn−Sn−1=a1n2−a1(n−1)2=2a1n−a1当n=1时,2a1×1−a1=a1,满足an=2a1n−a1,∴{an}的通项公式为an=2a1n−a1,(n∈N∗)∴an−an−1=(2a1n−a1)−[2a1(n−1)−a1]=2a1∴{an}是等差数列.【知识点】数列的概念及简单表示法;等差数列的通项公式;等差数列的前n项和【解析】【分析】由数列{Sn}是等差数列,及an>0,a2=3a1,即可得到等差数列{Sn}的公差d=a1,从而得到Sn=a1n2,(n∈N∗),进一步根据an与sn的关系,以及等差数列的定义,证明{an}是等差数列.7.已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列:②数列{Sn}是等差数列;③a2=3a1注:若选择不同的组合分别解答,则按第一个解答计分.【答案】选①②作条件证明③:设Sn=an+b(a>0),则Sn=(an+b)2,n当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为{an}也是等差数列,所以(a+b)2=a(2a−a+2b),解得b=0;所以an=a2(2n−1),所以a2=3a1.选①③作条件证明②:因为a2=3a1,{an}是等差数列,所以公差d=a2−a1=2a1,所以Sn=na1+n(n−1)2d=n2a1,即Sn=a1n,因为Sn+1−Sn=a1(n+1)−a1n=a1,所以{Sn}是等差数列.选②③作条件证明①:设Sn=an+b(a>0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为a2=3a1,所以a(3a+2b)=3(a+b)2,解得b=0或b=−4a3;当b=0时,a1=a2,an=a2(2n−1),当n≥2时,an-an-1=2a2满足等差数列的定义,此时{an}为等差数列;当b=−4a3时,Sn=an+b=an−43a,S1=−a3<0不合题意,舍去.综上可知{an}为等差数列.【知识点】数列的概念及简单表示法;等差数列的通项公式;等差数列的前n项和【解析】【分析】选(1)(2)做条件时,证明③:根据等差数列的定义得出Sn=an+b(a>0),且{an}也是等差数列,进一步递推出③a2=3a1;若选①③作条件证明②:由a2=3a1,显然d=a2−a1=2a1再写出前n项的和与a1,n的关系式Sn=a1n,进而证明{Sn}是等差数列.;选②③作条件证明①:先设Sn=an+b(a>0),进一步形为Sn=(an+b)2,再根据an与sn的关系,分n为1,n>1,推导出an-an-1=2a2,显然{an}为等差数列。8.记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2Sn+1bn=2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式.【答案】(1)由已知2Sn+1bn=2,则bnbn-1=Sn(n≥2)⇒2bn−1bn+1bn=2⇒2bn-1+2=2bn⇒bn-bn-1=12(n≥2),b1=32故{bn}是以32为首项,12为公差的等差数列。(2)由(1)知bn=32+(n-1)12=n+22,则2Sn+2n+2=2⇒Sn=n+2n+1n=1时,a1=S1=32n≥2时,an=Sn-Sn-1=n+2n+1-n+1n=−1n(n+1)故an=32,n=1−1n(n+1),n≥2【知识点】等差数列的通项公式;等差数列的前n项和;数列递推式【解析】【分析】(1)根据等差数列及前n项和的定义,由递推关系,求证。(2)呈上,先写出bn,再求{bn}前n磺的和Sn,再由an与Sn的关系,进一步求得结果。9.已知{an}是公差为2的等差数列,其前8项和为64.{bn}是公比大于0的等比数列,b1=4,b3−b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1bn,n∈N*.(i)证明{cn2−c2n}是等比数列;(ii)证明k=1nakak+1ck2−c2k<22(n∈N*)【答案】(1)因为{an}是公差为2的等差数列,其前8项和为64.所以a1+a2+⋅⋅⋅+a8=8a1+8×72×2=64,所以a1=1,所以an=a1+2(n−1)=2n−1,n∈N∗;设等比数列{bn}的公比为q,(q>0),所以b3−b2=b1q2−b1q=4(q2−q)=48,解得q=4(负值舍去),所以bn=b1qn−1=4n,n∈N∗;(2)(i)由题意,cn=b2n+1bn=42n+14n,所以cn2−c2n=(42n+14n)2−(44n+142n)=2⋅4n,所以cn2−c2n≠0,且cn+12−c2n+2cn2−c2n=2⋅4n+12⋅4n=4,所以数列{cn2−c2n}是等比数列;n(ii)由题意知,anan+1cn2−c2n=(2n−1)(2n+1)2⋅4n=4n2−12⋅22n<4n22⋅22n,所以anan+1cn2−c2n<4n22⋅22n=2n2⋅2n=12⋅n2n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1,设Tn=k=1nk2k−1=120+221+322+⋅⋅⋅+n2n−1,则12Tn=121+222+323+⋅⋅⋅+n2n,两式相减得12Tn=1+12+122+⋅⋅⋅+12n−1−n2n=1⋅(1−12n)1−12−n2n=2−n+22n,所以Tn=4−n+22n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1=12(4−n+22n−1)<22.【知识点】等差数列的通项公式;等差数列的前n项和;等比数列的通项公式;等比数列的前n项和;数列的求和【解析】【分析】(1)根据等差数列、等比数列的通项公式及前n项和公式求解即可;(2)(ⅰ)运算可得Cn2-C2n=2·4n,结合等比数列的定义即可得证;(ⅱ)利用放缩法得anan+1Cn2-C2n<4n22·22n,进而可得k=1nakak+1Ck2-C2k<12k=1nk2k-1,结合错位相减法即可得证.10.已知数列{an}满足a1=1,an+1={an+1,n为奇数an+2,n为偶数(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和【答案】(1)2n为偶数,则a2n+1=a2n+2,a2n+2=a2n+1+1,∴ a2n+2=a2n+3,即bn+1=bn+3,且b1=a2=a1+1=2,∴{bn}是以2为首项,3为公差的等差数列,∴b1=2,b2=5,bn=3n−1.(2)当n为奇数时,an=an+1−1,∴{an}的前20项和为a1+a2+⋯+a20=(a1+a3+⋯+a19)+(a2+a4+⋯+a20)=[(a2−1)+(a4−1)+⋯+(a20−1)]+(a2+a4+⋯+a20)=2(a2+a4+⋯+a20)−10.由(1)可知,a2+a4+⋯+a20=b1+b2+⋯+b10=2×10+10×92×3=155.∴{an}的前20项和为2×155−10=300.【知识点】等差数列;等差数列的通项公式;数列的求和【解析】【分析】(1)根据等差数列的定义及通项公式即可求解;(2)运用分组求和法,结合项之间的关系即可求解.11.设数列{an}满足a1=3,an+1=3an−4n.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.【答案】(1)解:由题意可得a2=3a1−4=9−4=5,a3=3a2−8=15−8=7,由数列{an}的前三项可猜想数列{an}是以3为首项,2为公差的等差数列,即an=2n+1,证明如下:当n=1时,a1=3成立;假设n=k时,ak=2k+1成立.那么n=k+1时,ak+1=3ak−4k=3(2k+1)−4k=2k+3=2(k+1)+1也成立.则对任意的n∈N*,都有an=2n+1成立(2)解:由(1)可知,an⋅2n=(2n+1)⋅2nSn=3×2+5×22+7×23+⋯+(2n−1)⋅2n−1+(2n+1)⋅2n,①2Sn=3×22+5×23+7×24+⋯+(2n−1)⋅2n+(2n+1)⋅2n+1,②由①−②得:−Sn=6+2×(22+23+⋯+2n)−(2n+1)⋅2n+1=6+2×22×(1−2n−1)1−2−(2n+1)⋅2n+1=(1−2n)⋅2n+1−2,即Sn=(2n−1)⋅2n+1+2.【知识点】数列的求和;数列递推式;数学归纳法【解析】【分析】(1)利用递推公式得出a2,a3,猜想得出{an}的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.12.设{an}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{an}的公比;(2)若a1=1,求数列{nan}的前n项和.【答案】(1)解:设{an}的公比为q,a1为a2,a3的等差中项,∵2a1=a2+a3,a1≠0,∴q2+q−2=0,∵q≠1,∴q=−2;n(2)解:设{nan}的前n项和为Sn,a1=1,an=(−2)n−1,Sn=1×1+2×(−2)+3×(−2)2+⋯+n(−2)n−1,①−2Sn=1×(−2)+2×(−2)2+3×(−2)3+⋯(n−1)(−2)n−1+n(−2)n,②①−②得,3Sn=1+(−2)+(−2)2+⋯+(−2)n−1−n(−2)n=1−(−2)n1−(−2)−n(−2)n=1−(1+3n)(−2)n3,∴Sn=1−(1+3n)(−2)n9.【知识点】数列的求和;等差数列的性质【解析】【分析】(1)由已知结合等差中项关系,建立公比q的方程,求解即可得出结论;(2)由(1)结合条件得出{an}的通项,根据{nan}的通项公式特征,用错位相减法,即可求出结论.13.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)求a1a2−a2a3+…+(−1)n−1anan+1.【答案】(1)解:设等比数列{an}的公比为q(q>1),则a2+a4=a1q+a1q3=20a3=a1q2=8,整理可得:2q2−5q+2=0,∵q>1,q=2,a1=2,数列的通项公式为:an=2⋅2n−1=2n.(2)解:由于:(−1)n−1anan+1=(−1)n−1×2n×2n+1=(−1)n−122n+1,故:a1a2−a2a3+…+(−1)n−1anan+1=23−25+27−29+…+(−1)n−1⋅22n+1=23[1−(−22)n]1−(−22)=85−(−1)n22n+35.【知识点】等比数列的通项公式;等比数列的前n项和【解析】【分析】(1)由题意得到关于首项、公比的方程组,求解方程组得到首项、公比的值即可确定数列的通项公式;(2)首先求得数列{(−1)n−1anan+1}的通项公式,然后结合等比数列前n项和公式求解其前n项和即可.14.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前100项和S100.【答案】(1)解:由于数列{an}是公比大于1的等比数列,设首项为a1,公比为q,依题意有a1q+a1q3=20a1q2=8,解得解得a1=2,q=2,或a1=32,q=12(舍),所以an=2n,所以数列{an}的通项公式为an=2n.(2)解:由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b1对应的区间为:(0,1],则b1=0;b2,b3对应的区间分别为:(0,2],(0,3],则b2=b3=1,即有2个1;b4,b5,b6,b7对应的区间分别为:(0,4],(0,5],(0,6],(0,7],则b4=b5=b6=b7=2,即有22个2;b8,b9,⋯,b15对应的区间分别为:(0,8],(0,9],⋯,(0,15],则b8=b9=⋯=b15=3,即有23个3;b16,b17,⋯,b31对应的区间分别为:(0,16],(0,17],⋯,(0,31],则b16=b17=⋯=b31=4,即有24个4;b32,b33,⋯,b63对应的区间分别为:(0,32],(0,33],⋯,(0,63],则b32=b33=⋯=b63=5,即有25个5;b64,b65,⋯,b100对应的区间分别为:(0,64],(0,65],⋯,(0,100],则b64=b65=⋯=b100=6,即有37个6.所以S100=1×2+2×22+3×23+4×24+5×25+6×37=480.【知识点】等比数列的通项公式;类比推理【解析】【分析】(1)利用基本元的思想,将已知条件转化为a1,q的形式,求解出a1,q,由此求得数列{an}的通项公式.(2)通过分析数列{bm}的规律,由此求得数列{bm}的前100项和S100.15.已知{an}为等差数列,{bn}为等比数列,a1=b1=1,a5=5(a4−a3),b5=4(b4−b3).(Ⅰ)求{an}和{bn}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求证:SnSn+2<Sn+12(n∈N*);(Ⅲ)对任意的正整数n,设cn=(3an−2)bnanan+2,n为奇数,an−1bn+1,n为偶数.求数列{cn}的前2n项和.【答案】解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由a1=1,a5=5(a4−a3),可得d=1.从而{an}的通项公式为an=n.由b1=1,b5=4(b4−b3),又q≠0,可得q2−4q+4=0,解得q=2,从而{bn}的通项公式为bn=2n−1.(Ⅱ)证明:由(Ⅰ)可得Sn=n(n+1)2,故SnSn+2=14n(n+1)(n+2)(n+3),Sn+12=14(n+1)2(n+2)2,从而SnSn+2−Sn+12=−12(n+1)(n+2)<0,所以SnSn+2<Sn+12.n(Ⅲ)当n为奇数时,cn=(3an−2)bnanan+2=(3n−2)2n−1n(n+2)=2n+1n+2−2n−1n,当n为偶数时,cn=an−1bn+1=n−12n,对任意的正整数n,有k=1nc2k−1=k=1n(22k2k+1−22k−22k−1)=22n2n+1−1,和k=1nc2k=k=1n2k−14k=14+342+543+⋯+2n−34n−1+2n−14n①由①得14k=1nc2k=142+343+544+⋯+2n−34n+2n−14n+1②由①②得34k=1nc2k=14+242+⋯+24n−2n−14n+1=24(1−14n)1−14−14−2n−14n+1,由于24(1−14n)1−14−14−2n−14n+1=23−23×14n−14−2n−14n×14=512−6n+53×4n+1,从而得:k=1nc2k=59−6n+59×4n.因此,k=12nck=k=1nc2k−1+k=1nc2k=4n2n+1−6n+59×4n−49.所以,数列{cn}的前2n项和为4n2n+1−6n+59×4n−49.【知识点】等差数列的通项公式;等比数列的通项公式;数列的求和【解析】【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(Ⅱ)利用(Ⅰ)的结论首先求得数列{an}前n项和,然后利用作差法证明即可;(Ⅲ)分类讨论n为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算k=1nc2k−1和k=1nc2k的值,据此进一步计算数列{cn}的前2n项和即可.16.设{an}是等差数列,{bn}是等比数列,公比大于0,已知a1=b1=3,b2=a3,b3=4a2+3.(Ⅰ)求{an}和{bn}的通项公式;(Ⅱ)设数列{cn}满足cn=1,n为奇数bn2,n为偶数求a1c1+a2c2+⋯+a2nc2n(n∈N*).【答案】解:(Ⅰ)解:设等差数列{an}的公差为d,等比数列{bn}的公比为q依题意,得3q=3+2d3q2−15+4d,解得d=3q=3,故an=3+3(n−1)=3n,bn=3×3n−1=3n.所以,{an}的通项公式为an=3n,{bn}的通项公式为bn=3n.(Ⅱ)解:a1c1+a2c2+⋯+a2nc2n=(a1+a3+a5+⋯+a2n−1)+(a2b1+a4b2+a6b3+⋯+a2nbn)=[n×3+n(−1)2×6]+(6×31+12×32+18×33+⋯+6n×3n)=3n2+6(1×31+2×32+⋯+n×3n)Tn=1×31+2×32+⋯+n×3n.①3Tn=1×32+2×33+⋯+n×33+1,②②-①得,=2Tn=−3−32−⋯−3n+n×3n+1=−3(1−3n)1−3=(2n−1)3n+1+32.所以,a1c1+a2c2+⋯+a2nc2n=3n2+6Tn=3n2+3×(2n−1)3n+1+32=(2n−1)3n+2+6n2+92(n∈N*)【知识点】等差数列的通项公式;等比数列的通项公式;数列的求和【解析】【分析】(I)利用等差数列与等比数列的通项公式即可得出,设{an}的公差为d,{bn}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{an}、{bn}的通项公式;(II)数列{cn}的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和Sn..17.已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3an−bn+4,4bn+1=3bn−an−4.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.【答案】(1)解:由题设得4(an+1+bn+1)=2(an+bn),即an+1+bn+1=12(an+bn).又因为a1+b1=l,所以{an+bn}是首项为1,公比为12的等比数列.由题设得4(an+1−bn+1)=4(an−bn)+8,即an+1−bn+1=an−bn+2.又因为a1–b1=l,所以{an−bn}是首项为1,公差为2的等差数列.(2)由(1)知,an+bn=12n−1,an−bn=2n−1.所以an=12[(an+bn)+(an−bn)]=12n+n−12,bn=12[(an+bn)−(an−bn)]=12n−n+12.【知识点】等差数列与等比数列的综合【解析】【分析】(1)整理已知的递推公式即可得出an+1+bn+1=12(an+bn),则{an+bn}是首项为1,公比为12的等比数列,再结合已知条件可推出an+1−bn+1=an−bn+2.即可得出{an−bn}是首项为1,公差为2的等差数列.(2)结合(1)的结论把两个数列{an+bn}、{an−bn}的通项公式相减,即可得出两个数列{an}和{bn}的通项公式。18.设{an}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(I)求{an}的通项公式;n(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.【答案】解:(I)根据三者成等比数列,可知(a3+8)2=(a2+10)(a4+6),故(−10+2d+8)2=(−10+d+10)(−10+3d+6),解得d=2,故an=−10+2(n−1)=2n−12;(Ⅱ)由(I)知Sn=(−10+2n−12)⋅n2=n2−11n,该二次函数开口向上,对称轴为n=5.5,故n=5或6时,Sn取最小值-30.【知识点】等差数列的通项公式;等差数列的前n项和【解析】【分析】(I)根据等比中项,结合等差数列的通项公式,求出d,即可求出an;(Ⅱ)由(1),求出Sn,结合二次函数的性质,即可求出相应的最小值.19.记Sn为等差数列{an}的前n项和,已知a1=-7,S3=-15.(1)求{an}的通项公式;(2)求Sn,并求Sn的最小值。【答案】(1)设数列的公差为d,由题意有:a1=-7,S3=3a2=-15a2=-5,d=2∴an=a1+(n-1)d=-7+2(n-1)=2n-9所以{an}的通项公式为:an=2n-9(2)由(1)知数列{an}的前n项和Sn=n(a1+an)2=n(−7+2n−9)2=n(n−8)Sn=n(n-8)=n2-8n=(n-4)2-16≥-16当n=4时取等,所以Sn的最小值为-16【知识点】等差数列的通项公式;等差数列的前n项和【解析】【分析】(1)根据等差数列a1,S3可求得数列的公差,进而可求{an}的通项公式;(2)由前n项和公式易得Sn,再根据二次函数求最值.20.等比数列{an}中,a1=1,a5=4a3.(1)求{an}的通项公式;(2)记Sn为{an}的前n项和,若Sm=63,求m。【答案】(1)解:因为a1=1,a5=4a3∴q4=4q2∴q=±2∴an=2n−1或an=(−2)n−1(2)解:Sn=1⋅2n−12−1=2n−1又Sm=63⇒2m−1=63⇒2m=64⇒m=6【知识点】等比数列;等比数列的前n项和【解析】【分析】由等比数列定义求出q,再由等比数列求和公式得到Sn再解出m.21.设{an}是等差数列,且a1=ln2,a2+a3=5ln2.(Ⅰ)求{an}的通项公式;(Ⅱ)求ea1+ea2+…+ean.【答案】解:(Ⅰ),∵a1=ln2,a2+a3=5ln2⇒a1+a4=5ln2⇒a4=4ln2,∴a4−a1=3ln2,则an=ln2+(n−1)ln2=nln2,∴an=nln2。(Ⅱ)ean=eln2n=2n,∴ea1+ea2+...+ean=2⋅2n−12−1=2n+1−2,n∈N∗【知识点】等差数列的通项公式;等比数列的前n项和;等差数列与等比数列的综合【解析】【分析】(Ⅰ)由等差数列性质,求出an,(Ⅱ)由等比数列求和公式求和。

相关推荐