人教版八年级数学上册教案:多边形的内角和
doc
2021-08-19 15:38:23
4页
人教版八年级数学上册教案:多边形的内角和多边形的内角和总课题多边形及其内角和总课时数第7课时课题多边形的内角和主备人课型新授时间教学目标1、了解多边形的内角、外角等概念;2、能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.教学重点多边形的内角和与多边形的外角和公式教学难点多边形的内角和定理的推导教学过程教学内容一、复习导入我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?二、多边形的内角和〔投影1〕如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?ABCD可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×180°=360°。类似地,你能知道五边形、六边形……n边形的内角和是多少度吗?〔投影2〕观察下面的图形,填空:,五边形六边形从五边形一个顶点出发可以引对角线,它们将五边形分成三角形,五边形的内角和等于;从六边形一个顶点出发可以引对角线,它们将六边形分成三角形,六边形的内角和等于;〔投影3〕从n边形一个顶点出发,可以引对角线,它们将n边形分成三角形,n边形的内角和等于。n边形的内角和等于(n一2)·180°.从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?分法一〔投影3〕如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形。∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°。图1图2分法二〔投影4〕如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形。∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n一2)×180°.三、例题〔投影6〕例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?如图,已知四边形ABCD中,∠A+∠C=180°,求∠B与∠D的关系.分析:∠A、∠B、∠C、∠D有什么关系?解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°又∠A+∠C=180°∴∠B+∠D=360°-(∠A+∠C)=180°这就是说,如果四边形一组对角互补,那么另一组对角也互补.〔投影7〕例2,如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?解:∵∠1+∠BAF=180°∠2+∠ABC=180°∠3+∠BAD=180°∠4+∠CDE=180°∠5+∠DEF=180°∠6+∠EFA=180°∴∠1+∠BAF+∠2+∠ABC+∠3+∠BAD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6×180°又∠1+∠2+∠3+∠4+∠5+∠6=4×180°∴∠BAF+∠ABC+∠BAD+∠CDE+∠DEF+∠EFA=6×180°-4×180°=360°这就是说,六边形形的外角和为360°。如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360°。对此,我们也可以这样来理解。〔投影8〕如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.四、课堂练习教材P24练习。五、课堂小结n边形的内角和是多少度?n边形的外角和是多少度?作业:,课后反思教研组审阅意见及建议