当前位置: 首页 > 初中 > 数学 > 人教版八年级数学上册教案:角的平分线的性质(1)

人教版八年级数学上册教案:角的平分线的性质(1)

doc 2021-08-19 15:53:18 3页
剩余1页未读,查看更多需下载
人教版八年级数学上册教案:角的平分线的性质(1)角的平分线的性质总课题全等三角形总课时数第15课时课题角的平分线的性质(1)主备人课型新授时间教学目标1.应用三角形全等的知识,解释角平分线的原理.2.会用尺规作一个已知角的平分线.教学重点利用尺规作已知角的平分线教学难点角的平分线的作图方法的提炼教学过程教学内容一.提出问题,创设情境问题1:三角形中有哪些重要线段.问题2:你能作出这些线段吗?三角形中有三条重要线段,它们分别是:三角形的高,三角形的中线,三角形的角的平分线.过三角形的顶点作这个顶点的对边的垂线,交对边于一点,顶点与垂足的连线就是这个三角形的高.取三角形一边的中点,此中点与这个边对应顶点的连线就是这条边的中线.用量角器量出三角形的角的大小,量角器零度线与这个角的一边重合,这个角一半所对应的线就是这个角的角平分线.三角形的角平分线是一条线段,而一个已知角的平分线是一条射线,这两个概念是有区别的.如果老师手里只有直尺和圆规,你能设计一个作角的平分线的操作方案吗?二.导入新课在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC与NC交于C点.求证:∠MOC=∠NOC.通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.受这个题的启示,我们能不能这样做:在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC与NC交于C点,连接OC,那么OC就是∠AOB的平分线了.,(学生思考、讨论后,统一思想,认为可行)议一议:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?学生活动:讨论操作原理.要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.看看条件够不够.所以△ABC≌△ADC(SSS).所以∠CAD=∠CAB.即射线AC就是∠DAB的平分线.原来用三角形全等,就可以解决角相等.线段相等的一些问题.看来温故是可以知新的.提出问题:通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示:作已知角的平分线的方法:已知:∠AOB.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯)学生讨论结果总结:,1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.练一练:任意画一角∠AOB,作它的平分线.三.随堂练习:课本P50练习.练后总结:平角∠AOB的平分线OC与直线AB垂直.将OC反向延长得到直线CD,直线CD与AB也垂直.四.课时小结本节课中我们利用已学过的三角形全等的知识,探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,进一步体会温故而知新是一种很好的学习方法.五.课后作业课本P51习题12.2第1、2题.课后反思

相关推荐