当前位置: 首页 > 初中 > 数学 > 人教版九年级数学上册教案设计:24.2.2直线和圆的位置关系(1)(带答案)

人教版九年级数学上册教案设计:24.2.2直线和圆的位置关系(1)(带答案)

docx 2021-08-24 11:33:40 2页
人教版九年级数学上册教案设计:24.2.2直线和圆的位置关系(1)(带答案)24.2.2 直线和圆的位置关系(1)1.理解掌握同一平面内的直线与圆的三种位置关系及相关概念.2.能根据圆心到直线的距离d与半径r的大小关系,准确判断出直线与圆的位置关系.重点:判断直线与圆的位置关系.难点:理解圆心到直线的距离.一、自学指导.(10分钟)自学:阅读教材P95~96.归纳:1.直线和圆有__两个__公共点时,直线和圆相交,直线叫做圆的__割线__.2.直线和圆有__一个__公共点时,直线和圆相切,直线叫做圆的__切线__,这个点叫做__切点__.3.直线和圆有__零个__公共点时,直线和圆相离.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.设⊙O的半径为r,直线l到圆心O的距离为d,则有:直线l和⊙O相交⇔__d<r__;直线l和⊙O相切⇔__d=r__;直线l和⊙O相离⇔d>r__.2.在Rt△ABC中,∠C=90°,AC=3cm,AB=6cm,以点C为圆心,与AB边相切的圆的半径为____cm.3.已知⊙O的半径r=3cm,直线l和⊙O有公共点,则圆心O到直线l的距离d的取值范围是0≤d≤3__.4.已知⊙O的半径是6,点O到直线a的距离是5,则直线a与⊙O的位置关系是__相交__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(7分钟)1.已知⊙O的半径是3cm,直线l上有一点P到O的距离为3cm,试确定直线l和⊙O的位置关系.解:相交或相切.点拨精讲:这里P到O的距离等于圆的半径,而不是直线l到O的距离等于圆的半径.2.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,若以C为圆心,r为半径的圆与斜边AB只有一个公共点,则r的取值范围是多少?,解:r=或3<r≤4.点拨精讲:分相切和相交两类讨论.3.在坐标平面上有两点A(5,2),B(2,5),以点A为圆心,以AB的长为半径作圆,试确定⊙A和x轴、y轴的位置关系.解:⊙A与x轴相交,与y轴相离.点拨精讲:利用数量关系证明位置关系.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.在Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,r为半径作圆.①当r满足__0<r<__时,⊙C与直线AB相离.②当r满足__r=__时,⊙C与直线AB相切.③当r满足__r>__时,⊙C与直线AB相交.2.已知⊙O的半径为5cm,圆心O到直线a的距离为3cm,则⊙O与直线a的位置关系是__相交.直线a与⊙O的公共点个数是__2个__.3.已知⊙O的直径是6cm,圆心O到直线a的距离是4cm,则⊙O与直线a的位置关系是__相离.4.已知⊙O的半径为r,点O到直线l的距离为d,且|d-3|+(6-2r)2=0.试判断直线与⊙O的位置关系.解:相切.5.设⊙O的半径为r,圆心O到直线l的距离为d,d,r是一元二次方程(m+9)x2-(m+6)x+1=0的两根,且直线l与⊙O相切,求m的值.解:m=0或m=-8.学生总结本堂课的收获与困惑.(2分钟)1.直线与圆的三种位置关系.2.根据圆心到直线的距离d与半径r的大小关系,判断出直线与圆的位置关系.学习至此,请使用本课时对应训练部分.(10分钟)

相关推荐