当前位置: 首页 > 初中 > 数学 > 2021年八年级数学上册第六章数据的分析达标检测题(附答案北师大版)

2021年八年级数学上册第六章数据的分析达标检测题(附答案北师大版)

doc 2021-10-30 20:00:24 8页
剩余6页未读,查看更多需下载
第六章达标检测卷一、选择题(每题3分,共30分)1.某市五月份第二周连续七天的空气质量指数分别为111,96,47,68,70,77,105,则这七天空气质量指数的平均数是(  )A.71.8B.77C.82D.95.72.方差是刻画数据波动程度的量,对于一组数据x1,x2,x3,…,xn,可用如下算式计算方差:s2=[(x1-5)2+(x2-5)2+(x3-5)2+…+(xn-5)2],其中“5”是这组数据的(  )A.最小值B.平均数C.中位数D.众数3.若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为(  )A.2B.3C.5D.74.某校春季运动会上,小刚和其他16名同学参加了百米预赛,成绩各不相同,小刚已经知道了自己的成绩,如果只取前8名参加决赛,那么小刚要想知道自己能否进入决赛,他还需要知道所有参加预赛同学的成绩的(  )A.平均数B.众数C.中位数D.方差5.从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成绩都是9环,方差分别是s2甲=0.25,s2乙=0.3,s2丙=0.4,s2丁=0.35,你认为派谁去参赛更合适?(  )A.甲B.乙C.丙D.丁6.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95分、90分、88分,则小彤这学期的体育成绩为(  )A.89分B.90分C.92分D.93分8 7.制鞋厂准备生产一批男皮鞋,经抽样(120名中年男子),得知所需鞋号和人数如下:鞋号/cm2424.52525.52626.527人数815202530202并求出鞋号的中位数是25.5cm,众数是26cm,平均数约是25.5cm,下列说法正确的是(  )A.因为需要鞋号为27cm的人数太少,所以鞋号为27cm的鞋可以不生产B.因为平均数约是25.5cm,所以这批男鞋可以一律按25.5cm的鞋生产C.因为中位数是25.5cm,所以25.5cm的鞋的生产量应占首位D.因为众数是26cm,所以26cm的鞋的生产量应占首位8.小莹同学10个周综合素质评价成绩统计如下:成绩/分94959798100周数/个12241这10个周的综合素质评价成绩的中位数和方差分别是(  )A.97.5,2.8B.97.5,3C.97,2.8D.97,39.甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是(  )A.两地气温的平均数相同B.甲地气温的中位数是6℃C.乙地气温的众数是4℃D.乙地气温相对比较稳定10.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一名同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是(  )A.a<13,b=13B.a<13,b<13C.a>13,b<13D.a>13,b=13二、填空题(每题3分,共24分)8 11.高一新生入学军训射击训练中,小张同学的射击成绩(单位:环)为5,7,9,10,7,则这组数据的众数是________.12.已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是________.13.某广场便民服务站统计了某月1至6日每天的用水量,并绘制了统计图如图所示,那么这6天用水量的中位数是__________.14.为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:h),整理成如图的统计图,则该班学生这天用于体育锻炼的平均时间为________h.15.学校篮球队五名队员的年龄(单位:岁)分别为17,15,16,15,17,其方差为0.8,则三年后这五名队员年龄的方差为________.16.某超市购进一批大米,大米的标准包装为每袋30kg,售货员任选6袋进行了称重检验,超过标准质量的记作“+”,不足标准质量的记作“-”,他记录的结果(单位:kg)是+0.5,-0.5,0,-0.5,-0.5,+1,那么这6袋大米质量的平均数和极差分别是________________.17.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的平均数为________.18.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差s28 =41,后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,平均分________,方差________.(填“变大”“不变”或“变小”)三、解答题(19~21题每题10分,22~24题每题12分,共66分)19.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分(单位:分)如下表:小组研究报告小组展示答辩甲918078乙817485丙798390(1)计算各小组的平均成绩,并按从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各个小组的成绩,哪个小组的成绩最高?20.某公司共有25名员工,下表是他们月收入的资料.月收入/元45000180001000055004800340030002200人数/人111361111(1)该公司员工月收入的中位数是________元,众数是________元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.8 21.为了参加“荆州市中小学生首届诗词大会”,某校八年级的两个班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班 86,85,77,92,85;八(2)班 79,85,92,85,89.通过数据分析,列表如下:班级平均分中位数众数方差八(1)班85bc22.8八(2)班a858519.2(1)直接写出表中a,b,c的值.(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.22.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如下图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成如上统计表:请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为__________;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.8 23.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).     平均分方差中位数众数合格率优秀率一班7.22.117692.5%20%二班6.854.288885%10%根据图表信息,回答问题:(1)用方差推断,______班的成绩波动较大;用优秀率和合格率推断,______班的阅读水平更好些.(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些,为什么?24.已知一组数据x1,x2,…,x6的平均数为1,方差为.(1)求x21+x22+…+x26的值;(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(用分数表示).8 答案一、1.C 2.B 3.C 4.C 5.A 6.B7.D 8.B 9.C 10.A二、11.7 12.8 13.31.5L 14.1.1515.0.8 16.30kg和1.5kg 17.4.418.不变;变小三、19.解:(1)由题意可得,x甲==83(分),x乙==80(分),x丙==84(分).因为x丙>x甲>x乙,所以按从高分到低分确定小组的排名顺序为丙、甲、乙.(2)甲组的成绩是91×40%+80×30%+78×30%=83.8(分),乙组的成绩是81×40%+74×30%+85×30%=80.1(分),丙组的成绩是79×40%+83×30%+90×30%=83.5(分).因为83.8>83.5>80.1,所以甲组的成绩最高.20.解:(1)3400;3000(2)用中位数或众数反映该公司全体员工月收入水平较为合适.理由:平均数受极端值45000元的影响,只有3个人的工资达到了平均数6276元,因此用平均数反映该公司全体员工月收入水平不合适.21.解:(1)a=86,b=85,c=85.(2)根据以上数据分析,八(2)班前5名同学的成绩较好.理由如下:因为八(2)班的平均分高于八(1)班的平均分,且八(2)班成绩的方差小于八(1)班成绩的方差,说明八(2)班的成绩更稳定,而中位数和众数两个班是一样的,所以八(2)班前5名同学的成绩较好.22.解:(1)4.5首(2)1200×=850(人),所以大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人.8 (3)(答案不唯一)活动启动之初的中位数是4.5首,众数是4首.大赛结束后一个月时的中位数是6首,众数是6首.由比赛前后的中位数和众数看,比赛后学生诵背诗词的积极性明显提高,这次举办的效果比较理想.23.解:(1)二;一 (2)略.24.解:(1)因为数据x1,x2,…,x6的平均数为1,所以x1+x2+…+x6=1×6=6.又因为方差为,所以[(x1-1)2+(x2-1)2+…+(x6-1)2]=[x21+x22+…+x26-2(x1+x2+…+x6)+6]=(x21+x22+…+x26-2×6+6)=(x21+x22+…+x26)-1=.所以x21+x22+…+x26=16.(2)因为数据x1,x2,…,x7的平均数为1,所以x1+x2+…+x7=1×7=7.因为x1+x2+…+x6=6,所以x7=1.因为[(x1-1)2+(x2-1)2+…+(x6-1)2]=,所以(x1-1)2+(x2-1)2+…+(x6-1)2=10.所以s2=[(x1-1)2+(x2-1)2+…+(x7-1)2]=[10+(1-1)2]=.8

相关推荐