当前位置: 首页 > 初中 > 数学 > 2021年八年级数学上册第15章轴对称图形和等腰三角形整合提升训练(有答案沪科版)

2021年八年级数学上册第15章轴对称图形和等腰三角形整合提升训练(有答案沪科版)

doc 2021-11-02 01:36:59 17页
剩余15页未读,查看更多需下载
专训一:等腰三角形中四种常用作辅助线的方法名师点金:在几何图形中添加辅助线,往往能把分散的条件集中,使隐蔽的条件显露,将复杂的问题简单化,例如:作“三线”中的“一线”,作平行线构造等腰(边)三角形,利用截长补短法证线段和、差关系或求角的度数,利用加倍折半法证线段的倍分关系.作“三线”中的“一线”1.如图,在△ABC中,AB=AC,D是BC的中点,过点A作EF∥BC,且AE=AF.求证:DE=DF.(第1题)作平行线法2.如图,在△ABC中,AB=AC,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,点P,Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求证:PD=QD.(2)如图②,过点P作直线BC的垂线,垂足为E,当P,Q在移动的过程中,线段BE,ED,CD中是否存在长度保持不变的线段?请说明理由.(第2题)截长补短法17,3.如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°.求证:BD+DC=AB.(第3题)加倍折半法4.如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠C的度数.(第4题)5.如图,CE,CB分别是△ABC,△ADC的中线,且AB=AC.求证:CD=2CE.(第5题)专训二:分类讨论思想在等腰三角形中的应用名师点金:分类讨论思想是解题的一种常用方法,在等腰三角形中,往往会遇到条件或结论不唯一的情况,此时就需要分类讨论.通过正确地分17,类讨论,可以使复杂的问题得到清晰、完整、严密的解答.其解题策略为:先分类,再画图,后计算.当顶角或底角不确定时,分类讨论1.若等腰三角形中有一个角等于40°,则这个等腰三角形的顶角度数为(  )A.40°  B.100°  C.40°或70°  D.40°或100°2.已知等腰三角形ABC中,AD⊥BC于D,且AD=BC,则等腰三角形ABC的底角的度数为(  )A.45°  B.75°  C.45°或75°  D.65°3.若等腰三角形的一个外角为64°,则底角的度数为________.当底和腰不确定时,分类讨论4.(2015·荆门)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为(  )A.8或10  B.8  C.10  D.6或125.等腰三角形的两边长分别为7和9,则其周长为________.6.若实数x,y满足|x-4|+(y-8)2=0,则以x,y的值为边长的等腰三角形的周长为________.当高的位置关系不确定时,分类讨论7.等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.由腰的垂直平分线引起的分类讨论8.在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,求底角∠B的度数.17,由腰上的中线引起的分类讨论9.等腰三角形ABC的底边BC长为5cm,一腰上的中线BD把其分为周长差为3cm的两部分.求腰长.点的位置不确定引起的分类讨论10.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有(  )(第10题)                   A.7个B.6个C.5个D.4个11.如图,在△ABC中,BC>AB>AC,∠ACB=40°,如果D,E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的度数.(第11题)专训三:三角形中的五种常见证明类型名师点金:学习了全等三角形及等腰三角形的性质和判定后,与此相关的几何证明题的类型非常丰富,常见的类型有:证明数量关系,位置关系,线段的倍分关系、和差关系、不等关系等.17,证明数量关系题型1 证明线段相等1.如图,在△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.(第1题)题型2 证明角相等2.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD于F交BC于E.求证:∠ADB=∠CDE.(第2题)证明位置关系题型1 证明平行关系3.已知△ABC为等边三角形,点P在AB上,以CP为边长作等边三角形PCE,连接AE.求证:AE∥BC.(第3题)题型2 证明垂直关系4.如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AB,AC上,且BD=CF,BE=CD,G是EF的中点.求证:DG⊥EF.17,(第4题)证明线段的倍分关系5.如图,在△ABC中,AB=AC,AD,BE是△ABC的高,AD,BE相交于点H,且AE=BE.求证:AH=2BD.(第5题)证明线段的和差关系6.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC.求证:AB+BD=AC.(第6题)证明线段的不等关系7.如图,AD是△ABC中∠BAC的平分线,P是AD上的任意一点,且AB>AC.求证:AB-AC>PB-PC.17,(第7题)专训四:四种常见热门考点名师点金:本章内容在中考试题中一直占有重要的地位,属必考内容,考查形式多以选择、填空形式出现,其考查内容主要有轴对称和轴对称图形的识别、最短距离问题、与翻折有关的计算和证明题等.轴对称图形与轴对称1.(2015·重庆)下列图形是轴对称图形的是(  )(第2题)2.(2015·乌鲁木齐)如图,△ABC的面积等于6,边AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,点P在直线AD上,则线段BP的长不可能是(  )                   A.3B.4C.5D.63.(2015·绥化)点A(-3,2)关于x轴的对称点A′的坐标为________.17,4.(2014·宁夏)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(-2,1),B(-4,5),C(-5,2),画出△ABC关于y轴对称的△A1B1C1.(第4题)线段垂直平分线与角平分线(第5题)5.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,则下列结论错误的是(  )A.BD平分∠ABCB.△BCD的周长等于AB+BC(第6题)C.AD=BD=BCD.点D是线段AC的中点6.如图,已知在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,那么∠CAB的大小是(  )A.80°  B.50°  C.40°  D.20°7.如图,已知C是∠MAN的平分线上一点,CE⊥AB于点E,点B,D分别在AM,AN上,且AE=(AD+AB).问:∠1和∠2有何关系?17, (第7题)等腰三角形的判定与性质(第8题)8.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F分别为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)DA平分∠EDF;(4)AD垂直平分EF.其中正确的有(  )                   A.1个B.2个C.3个D.4个9.(中考·淄博)如图,AD∥BC,BD平分∠ABC.求证:AB=AD.(第9题)等边三角形的性质与判定10.如图,在等边三角形ABC中,D,E,F分别为AB,BC,CA上一点(不是中点),且AD=BE=CF,AE与CD,BF分别交于点G,H,BF与CD交于点N,则△GHN是17,(第10题)(  )A.等边三角形B.腰和底边不相等的等腰三角形C.直角三角形D.不等边三角形(第11题)11.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,则BC′的长为________.答案专训一(第1题)17,1.证明:如图,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.∵EF∥BC,∴AD⊥EF.∵AE=AF,∴AD垂直平分EF.∴DE=DF.2.(1)证明:如图①,过点P作PF∥AC交BC于F.∵点P和点Q同时出发,且速度相同,∴BP=CQ.∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠DQC.又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=FP,∴FP=CQ.在△PFD和△QCD中,∠DPF=∠DQC,∠PDF=∠QDC,FP=CQ,∴△PFD≌△QCD(AAS),∴PD=QD. (第2题)(2)解:线段ED的长度保持不变.理由如下:如图②,过点P作PF∥AC交BC于F.由(1)知PB=PF.∵PE⊥BF,∴BE=EF.由(1)知△PFD≌△QCD,∴FD=CD,∴ED=EF+FD=BE+CD=BC,∴线段ED的长度保持不变.3.证明:如图,延长BD至E,使BE=AB,连接CE,AE.(第3题)∵∠ABE=60°,BE=AB,∴△ABE为等边三角形.∴∠AEB=60°,AB=AE.又∵∠ACD=60°,∴∠ACD=∠AEB.∵AB=AC,AB=AE,∴AC=AE.∴∠ACE=∠AEC.∴∠DCE=∠DEC.∴DC=DE.∴AB=BE=BD+DE=BD+DC,即BD+DC=AB.17,4.解:在DC上截取DE=BD,连接AE,∵AD⊥BC,BD=DE,∴AD是线段BE的垂直平分线,∴AB=AE,∴∠B=∠AEB.∵AB+BD=DC,DE=BD,∴AB+DE=CD.而CD=DE+EC,∴AB=EC,∴AE=EC.∴∠EAC=∠C,可设∠EAC=∠C=x,∵∠AEB为△AEC的外角,∴∠AEB=∠EAC+∠C=2x,∴∠B=2x,∴∠BAE=180°-2x-2x=180°-4x.∵∠BAC=120°,∴∠BAE+∠EAC=120°,即180°-4x+x=120°,解得x=20°,则∠C=20°.(第5题)5.证明:如图,延长CE到点F,使EF=CE,连接FB,则CF=2CE.∵CE是△ABC的中线,∴AE=BE.在△BEF和△AEC中,∴△BEF≌△AEC(SAS).∴∠EBF=∠A,BF=AC.又∵AB=AC,∴∠ABC=∠ACB.∴∠CBD=∠A+∠ACB=∠EBF+∠ABC=∠CBF.∵CB是△ADC的中线,∴AB=BD.又∵AB=AC,AC=BF,∴BF=BD.在△CBF与△CBD中,∴△CBF≌△CBD(SAS).∴CF=CD.∴CD=2CE.专训二1.D 2.C 3.32° 4.C 5.23或25 6.207.解:设AB=AC,BD⊥AC;(1)高与底边的夹角为25°时,高一定在△ABC的内部,如图①,∵∠DBC=25°,∴∠C=90°-∠DBC=90°-25°=65°,∴∠ABC=∠C=65°,∠A=180°-2×65°=50°.(第7题)17,(2)当高与另一腰的夹角为25°时,如图②,高在△ABC的内部时,∵∠ABD=25°,∴∠A=90°-∠ABD=65°,∴∠C=∠ABC=(180°-∠A)÷2=57.5°;如图③,高在△ABC的外部时,∵∠ABD=25°,∴∠BAD=90°-∠ABD=90°-25°=65°,∴∠BAC=180°-65°=115°,∴∠ABC=∠C=(180°-115°)÷2=32.5°,故三角形各个内角的度数为:65°,65°,50°或65°,57.5°,57.5°或115°,32.5°,32.5°.点拨:由于题目中的“另一边”没有指明是“腰”还是“底边”,因此必须进行分类讨论,另外,还要结合图形,分高在三角形内还是在三角形外.8.解:此题分两种情况:(1)如图①,AB边的垂直平分线与AC边交于点D,∠ADE=40°,则∠A=50°,∵AB=AC,∴∠B=(180°-50°)÷2=65°.(第8题)(2)如图②,AB边的垂直平分线与CA的延长线交于点D,∠ADE=40°,则∠DAE=50°,∴∠BAC=130°.∵AB=AC,∴∠B=(180°-130°)÷2=25°.故∠B的大小为65°或25°.9.分析:由于题目中没有指明是“(AB+AD)-(BC+CD)”为3cm,还是“(BC+CD)-(AB+AD)”为3cm,因此必须分两种情况讨论.解:∵BD为AC边上的中线,∴AD=CD,(1)当(AB+AD)-(BC+CD)=3cm时,有AB-BC=3cm,∵BC=5cm,∴AB=5+3=8(cm);(2)当(BC+CD)-(AB+AD)=3cm时,有BC-AB=3cm,∵BC=5cm,∴AB=5-3=2(cm),但是当AB=2cm时,三边长分别为2cm,2cm,5cm.而2+2<5,不能构成三角形,舍去.故腰长为8cm.10.B11.解:(1)当点D、E在点A的同侧,且都在BA的延长线上时,如图①,17,(第11题)∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,∵∠DCE=∠BEC-∠ADC,∴∠DCE=(180°-∠ABC)÷2-∠BAC÷2=(180°-∠ABC-∠BAC)÷2=∠ACB÷2=40°÷2=20°.(2)当点D、E在点A的同侧,且点D在D′的位置,E在E′的位置时,如图②,与(1)类似地也可以求得∠D′CE′=∠ACB÷2=20°.(3)当点D、E在点A的两侧,且E点在E′的位置时,如图③,∵BE′=BC,∴∠BE′C=(180°-∠CBE′)÷2=∠ABC÷2,∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,又∵∠DCE′=180°-(∠BE′C+∠ADC),∴∠DCE′=180°-(∠ABC+∠BAC)÷2=180°-(180°-∠ACB)÷2=90°+∠ACB÷2=90°+40°÷2=110°.(4)当点D、E在点A的两侧,且点D在D′的位置时,如图④,∵AD′=AC,∴∠AD′C=(180°-∠BAC)÷2,∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,∴∠D′CE=180°-(∠D′EC+∠ED′C)=180°-(∠BEC+∠AD′C)=180°-[(180°-∠ABC)÷2+(180°-∠BAC)÷2]=(∠BAC+∠ABC)÷2=(180°-∠ACB)÷2=(180°-40°)÷2=70°.综上所述,∠DCE的度数为20°或110°或70°.专训三1.证明:连接AD.∵AB=AC,D是BC的中点,∴∠EAD=∠FAD.在△AED和△AFD中,∴△AED≌△AFD(SAS).∴DE=DF.17,2.证明:过点C作CG⊥AC交AE的延长线于G,则CG∥AB,∴∠BAF=∠G.又∵AF⊥BD,AC⊥CG,∴∠BAF+∠ABD=90°,∠CAG+∠G=90°.∴∠ABD=∠CAG.在△ABD和△CAG中,∴△ABD≌△CAG(ASA).∴AD=CG,∠ADB=∠G.又∵D为AC的中点,∴AD=CD,∴CD=CG.∵AB=AC,∴∠ABC=∠DCE.又∵AB∥CG,∴∠ABC=∠GCE.∴∠DCE=∠GCE.又∵CE=CE,∴△CDE≌△CGE(SAS).∴∠CDE=∠G.∴∠ADB=∠CDE.3.证明:∵△ABC,△PCE均为等边三角形,∴BC=AC,PC=EC,∠ACB=∠B=∠PCE=60°.∴∠ACB-∠ACP=∠PCE-∠ACP,即∠BCP=∠ACE.在△CBP和△CAE中,∴△CBP≌△CAE(SAS).∴∠CAE=∠B=60°.∴∠CAE=∠ACB.∴AE∥BC. (第4题)4.证明:如图,连接ED,FD.∵AB=AC,∴∠B=∠C.在△BDE和△CFD中,∴△BDE≌△CFD(SAS).∴DE=DF.17,又∵G是EF的中点,∴DG⊥EF.5.证明:∵AD,BE是△ABC的高,∴∠ADB=∠AEB=90°,又∵∠BHD=∠AHE,∴∠EBC=∠EAH.在△BCE和△AHE中,∴△BCE≌△AHE(ASA).∴AH=BC.又∵AB=AC,AD⊥BC,∴BC=2BD.∴AH=2BD.6.证明:如图,延长CB至E,使BE=BA,则∠BAE=∠E,∴∠ABC=2∠E.又∵∠ABC=2∠C,∴∠E=∠C,∴AE=AC.∵AD平分∠BAC,∴∠BAD=∠DAC.∵∠BAE=∠E,∠E=∠C,∴∠BAE=∠C.又∵∠EAD=∠BAE+∠BAD,∠EDA=∠C+∠DAC,∴∠EAD=∠EDA.∴AE=DE.∴AC=DE=BE+BD=AB+BD.(第6题)  (第7题)7.证明:如图,在AB上截取AE,使AE=AC,连接PE.∵AD是∠BAC的平分线,∴∠EAP=∠CAP.在△AEP和△ACP中,∴△AEP≌△ACP(SAS),∴PE=PC.在△PBE中,BE>PB-PE,即AB-AC>PB-PC.17,专训四1.A 2.A 3.(-3,-2)4.解:如图所示.(第4题)5.D 6.D (第7题)7.解:作CF⊥AN于F(如图),∵∠3=∠4,CE⊥AM,∴CF=CE,又∵AC=AC,∴Rt△ACF≌Rt△ACE(HL),∴AF=AE.∵AE=(AD+AB)=(AF-DF+AE+BE)=AE+(BE-DF),∴BE-DF=0,∴DF=BE,又∵CF=CE,∠CFD=∠CEB=90°,∴△DFC≌△BEC(SAS).∴∠5=∠2.∵∠1+∠5=180°,∴∠1+∠2=180°,即∠1与∠2互补.8.D9.证明:∵AD∥BC,∴∠ADB=∠DBC.∵BD平分∠ABC,∴∠ABD=∠DBC.∴∠ADB=∠ABD,∴AB=AD.10.A 11.317

相关推荐