2.1.1整式--用字母表示数
ppt
2021-11-09 15:56:11
22页
你知道最早有意识地使用字母来表示数的人是谁吗?他就是法国数学家韦达。韦达一生都致力于数学的研究,做出了很多重要贡献,成为那个时代最伟大的数学家,自从韦达系统使用字母表示数后,引出了大量数学发现,解决了古代的许多复杂问题。韦达,用字母表示数是数学发展史上的一件大事,是由算术跨越到代数的桥梁,是人类数学发展史上的一个飞跃.著名的数学教育家玻利亚曾说:“代数是一种不用词句而只用符号所构成的语言.”,义务教育教科书数学七年级上册,课件说明学习目标:(1)理解字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系.(2)经历用含有字母的式子表示实际问题的数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.学习重点:理解字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系,感受其中“抽象”的数学思想.,展示图片,青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100km/h.列车在冻土地段行驶时,根据已知数据求出列车行驶的路程.(1)2h行驶多少千米?3h呢?8h呢?th呢?(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?,,例1(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;(3)一个长方体包装盒的长和宽都是acm,高是hcm,用式子表示它的体积;(4)用式子表示数n的相反数.2答案:(1)0.8p;(2)mn;(3)ah;(4)n.,例2(1)一条河的水流速度是2.5km/h,船在静水中的速度是vkm/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数;,例2.(3)如左下图(图中长度单位:cm),用式子表示三角尺的面积;(4)右下图是一所住宅的建筑平面图(图中长度单位:m),用式子表示这所住宅的建筑面积.,解:(1)船在这条河中顺水行驶的速度是(v2.5)km/h,逆水行驶的速度是(v2.5)km/h.(2)买3个篮球、5个排球、2个足球共需要(3x5y2z)元.12(3)三角尺的面积(单位:cm2)是abπr.2(4)这所住宅的建筑面积(单位:m2)是2x2x18.,归纳:列式就是把实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为符号语言.①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.,归纳:列式时:①数与字母、字母与字母相乘省略乘号;②数与字母相乘时数字在前;③式子中出现除法运算时,一般按分数形式来写;④带分数与字母相乘时,把带分数化成假分数;⑤带单位时,适当加括号.,例3234(1)观察下列各式:x,2x,3x,4x,…,n按此规律,第个n式子是nx;,例3(2)测得一种树苗的高度与树苗生长的年数的有关数据如下表(树苗原高100cm),根据表格思考下面问题:年数高度/cm1100+5100+5×12100+10100+5×23100+15100+5×34100+20100+5×4………………100+5×n前四年树苗高度的变化与年数有什么关系?假设以后各年树苗高度的变化与年数保持上述关系,用式子表示生长了n年的树苗的高度.,例3(3)礼堂第1排有20个座位,后面每排都比前一排多一个座位.用式子表示第n排的座位数.20(n1)用整式表示实际问题中的数量关系和变化规律,可以从特殊值入手,借助表格等分析,由特殊到一般,由个体到整体地观察、分析问题,发现规律,并用含有字母的式子表示一般的结论,这体现了抽象的数学思想.,,练习1(教科书第56页练习)(1)某种商品每袋4.8元,在一个月内的销售量是m袋,用式子表示在这个月内销售这种商品的收入.4.8m元(2)圆柱体的底面半径、高分别是r,h,用式子表示圆柱体的体积.2πrh(3)有两片棉田,一片有mhm2(公顷,1hm2=104m2),平均每公顷产棉花akg;另一片有nhm2,平均每公顷产棉花bkg,用式子表示两片棉田上棉花的总产量.ambn(kg)(4)在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是amm,小正方形的边长是bmm,用式子表示剩余部分的面积.222a-b(mm),19,科学家爱因斯坦在谈成功的秘诀时,写下了一个公式:A=X+Y+Z,他解释道:A代表成功,X代表艰苦的劳动,Y代表正确的方法,Z代表少说空话。,教科书习题2.1的第1题,第2题,第7题.,