13.3.1 第1课时 等腰三角形的性质公开课
ppt
2021-11-09 16:00:41
13页
13.3等腰三角形第十三章轴对称第1课时等腰三角形的性质
导入新课等腰三角形情境引入
定义及相关概念有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.ACB腰腰底边顶角底角底角
讲授新课等腰三角形的性质1一剪一剪:把一张长方形的纸按图中的红线对折,并剪去阴影部分(一个直角三角形),再把得到的直角三角形展开,得到的三角形ABC有什么特点?互动探究
折一折:△ABC是轴对称图形吗?它的对称轴是什么?ACDB折痕所在的直线是它的对称轴.等腰三角形是轴对称图形.AB=AC等腰三角形
找一找:把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.重合的线段重合的角ACBDAB与ACBD与CDAD与AD∠B与∠C.∠BAD与∠CAD∠ADB与∠ADC猜一猜:由这些重合的角,你能发现等腰三角形的性质吗?说一说你的猜想.
性质1等腰三角形的两个底角相等(等边对等角).ABCD猜想与验证已知:△ABC中,AB=AC.求证:∠B=∠C.证法1:作底边BC边上的中线AD,则BD=DC在△ABD与△ACD中:AB=ACBD=DCAD=AD∴△ABD≌△ACD(SSS).∴∠B=∠C.应用格式:∵AB=AC(已知)∴∠B=∠C(等边对等角)
性质2等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合(通常说成等腰三角形的“三线合一”).ABCD((12填一填:根据等腰三角形性质定理2完成下列填空.在△ABC中,AB=AC时,(1)∵AD⊥BC,∴∠_____=∠_____,____=____.(2)∵AD是中线,∴____⊥____,∠_____=∠_____.(3)∵AD是角平分线,∴____⊥____,_____=_____.122BDCDADBCBD1BCADCD
ABCDx⌒2x⌒2x⌒⌒2x例1如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.典例精析解析:(1)观察∠BDC与∠A、∠ABD的关系,∠BDC与∠C、∠ABC呢?∠BDC=∠A+∠ABD=2∠A,∠ABC=∠C=∠BDC=2∠A.(2)设∠A=x,请把△ABC的内角和用含x的式子表示出来.∵∠A+∠ABC+∠C=180°∴x+2x+2x=180°,
ABCD解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD.设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x,于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.∴∠A=36°,∠ABC=∠C=72°.x⌒2x⌒2x⌒⌒2x方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x.
如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.解:∵AB=AD=DC∴∠B=∠ADB,∠C=∠DAC设∠C=x,则∠DAC=x,∠B=∠ADB=∠C+∠DAC=2x,在△ABC中,根据三角形内角和定理,得2x+x+26°+x=180°,解得x=38.5°.∴∠C=x=38.5°,∠B=2x=77°.针对训练:
(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?课堂小结
教科书习题13.3第1、2、4、6题.布置作业