当前位置: 首页 > 初中 > 数学 > 14.1.4 第1课时 单项式与多项式相乘 (3)

14.1.4 第1课时 单项式与多项式相乘 (3)

ppt 2021-11-09 18:00:03 19页
剩余15页未读,查看更多需下载
14.1.4整式的乘法第十四章整式的乘法与因式分解导入新课讲授新课当堂练习课堂小结第2课时单项式与多项式相乘 学习目标1.掌握单项式与多项式相乘的运算法则.(重点)2.能够灵活地进行单项式与多项式相乘的运算.(难点) 导入新课复习引入1.幂的运算性质有哪几条?同底数幂的乘法法则:am·an=am+n(m、n都是正整数).幂的乘方法则:(am)n=amn(m、n都是正整数).积的乘方法则:(ab)n=anbn(m、n都是正整数). 单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与单项式的乘法法则(1)系数相乘;(2)相同字母的幂相乘;(3)其余字母连同它的指数不变,作为积的因式.注意复习引入2 单项式与多项式相乘问题如图,试求出三块草坪的总面积是多少?如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____.ppabpcpapcpb ppabpc cbap如果把它看成一个大长方形,那么它的边长为________,面积可表示为_________.p(a+b+c)(a+b+c) 如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____.如果把它看成一个大长方形,那么它的面积可表示为_________.cbappapcpbp(a+b+c)pa+pb+pcp(a+b+c) pa+pb+pcp(a+b+c)p(a+b+c)pb+pcpa+根据乘法的分配律 知识要点单项式乘以多项式的法则单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.(1)依据是乘法分配律(2)积的项数与多项式的项数相同.注意mbpapc 例1计算:(1)(-4x)·(2x2+3x-1);解:(1)(-4x)·(2x2+3x-1)==-8x3-12x2+4x;(-4x)·(2x2)(-4x)·3x(-4x)·(-1)++典例精析(2)原式单项式与多项式相乘单项式与单项式相乘乘法分配律转化 例2先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.当a=-2时,解:3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a.原式=-20×4-9×2=-98.方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要搞错. 例3如果(-3x)2(x2-2nx+2)的展开式中不含x3项,求n的值.方法总结:在整式乘法的混合运算中,要注意运算顺序.注意当要求多项式中不含有哪一项时,则表示这一项的系数为0.解:(-3x)2(x2-2nx+2)=9x2(x2-2nx+2)=9x4-18nx3+18x2.∵展开式中不含x3项,∴n=0. 1.计算3a2·2a3的结果是()A.5a5B.6a5C.5a6D.6a62.计算(-9a2b3)·8ab2的结果是()A.-72a2b5B.72a2b5C.-72a3b5D.72a3b53.若(ambn)·(a2b)=a5b3那么m+n=()A.8B.7C.6D.5当堂练习BCD (1)4(a-b+1)=___________________;4a-4b+4(2)3x(2x-y2)=___________________;6x2-3xy2(3)(2x-5y+6z)(-3x)=___________________;-6x2+15xy-18xz(4)(-2a2)2(-a-2b+c)=___________________.-4a5-8a4b+4a4c4.计算 5.计算:-2x2·(xy+y2)-5x(x2y-xy2).解:原式=(-2x2)·xy+(-2x2)·y2+(-5x)·x2y+(-5x)·(-xy2)=-2x3y+(-2x2y2)+(-5x3y)+5x2y2=-7x3y+3x2y2.6.解方程:8x(5-x)=34-2x(4x-3).解得x=1.解:去括号,得40x-8x2=34-8x2+6x,移项,得40x-6x=34,合并同类项,得34x=34, 住宅用地人民广场商业用地3a3a+2b2a-b4a7.如图,一块长方形地用来建造住宅、广场、商厦,求这块地的面积.解:4a[(3a+2b)+(2a-b)]=4a(5a+b)=4a·5a+4a·b=20a2+4ab,答:这块地的面积为20a2+4ab. 8.某同学在计算一个多项式乘以-3x2时,算成了加上-3x2,得到的答案是x2-2x+1,那么正确的计算结果是多少?拓展提升解:设这个多项式为A,则∴A=4x2-2x+1.∴A·(-3x2)=(4x2-2x+1)(-3x2)A+(-3x2)=x2-2x+1,=-12x4+6x3-3x2. 课堂小结整式乘法单项式×单项式实质上是转化为同底数幂的运算单项式×多项式实质上是转化为单项式×单项式四点注意(1)计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负(2)不要出现漏乘现象(3)运算要有顺序:先乘方,再乘除,最后加减(4)对于混合运算,注意最后应合并同类项

相关推荐