当前位置: 首页 > 初中 > 数学 > 21.2.4 一元二次方程的根与系数的关系

21.2.4 一元二次方程的根与系数的关系

pptx 2021-11-09 18:00:15 12页
剩余8页未读,查看更多需下载
第二十一章一元二次方程学习新知检测反馈21.2.4一元二次方程的根与系数的关系九年级数学上新课标[人] (1)你能发现两根之和、两根之积与方程的系数之间有什么关系吗?(2)用语言叙述你发现的规律.(3)进一步猜想:方程ax2+bx+c=0(a≠0)的根x1,x2与a,b,c之间的关系.(4)你能证明上面的猜想吗?请证明,并用文字语言叙述说明.完成下列表格并思考:方程x1x2x1+x2x1·x22x2-3x-2=02-13x2-4x+1=01探究活动一 探究活动二根据求根公式,得 归纳总结1.一元二次方程的两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比;2.一元二次方程的根与系数之间的关系:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2,x1x2 例题讲解(教材例4)根据一元二次方程的根与系数的关系,求下列方程两个根x1,x2的和与积:(1)x2-6x-15=0;(2)3x2+7x-9=0;(3)5x-1=4x2.答案 知识拓展.∴x1=.利用根与系数之间的关系可以不解方程而求出与根有关的代数式的值.比如 检测反馈1.若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是()A.-10B.10C.-16D.16A 2.一元二次方程x2+x-2=0的两根之积是()A.-1B.-2C.1D.2B 3.已知方程x2-5x+2=0的两个解分别为x1,x2,则x1+x2-x1·x2的值为()A.-7B.-3C.7D.34.方程x2=2x-1的两根之和等于.D2 5.已知方程x2-6x-2m+5=0的一个根为2,求另一个根及m的值..,解:设方程的两个根为x1,x2,根据根与系数之间的关系可得∵方程的一个根为2,∴方程的另一个根为4,且-2m+5=8, 6.已知关于x的一元二次方程5x2-4x-1=0的两个解为x1和x2.解:(1)由方程根与系数之间的关系得 课堂小结在方程ax2+bx+c=0(a≠0)中a,b,c的作用:1.二次项系数a是否为零,决定着方程是否为二次方程;2.当a≠0时,Δ=b2-4ac可判定根的情况;4.根与系数之间的关系的前提下是:b2-4ac≥0,运用根与系数的关系求字母的值时,特别是求出字母有两个值时,一定要检验b2-4ac是否非负.

相关推荐