当前位置: 首页 > 初中 > 数学 > 人教版八年级数学上册《13-3-1 等腰三角形(第2课时)》教学课件PPT初二优秀公开课

人教版八年级数学上册《13-3-1 等腰三角形(第2课时)》教学课件PPT初二优秀公开课

pdf 2021-11-24 16:00:16 29页
剩余19页未读,查看更多需下载
人教版数学八年级上册13.3.1等腰三角形(第2课时)探究新知如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测得∠B=∠C.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?ABC素养目标2.通过学习等腰三角形的判定方法,使学生能从正反两个方面认识等腰三角形,养成科学的思维习惯.1.掌握等腰三角形的判定方法,并运用其进行证明和计算.探究新知知识点等腰三角形的判定如图,在△ABC中,∠B=∠C,那么它们所对的边AB和AC有什么数量关系?A小活动请同学用直尺和量角器,画一个△ABC,其BC中∠B=∠C=30°,请你量一AB=AC量AB与AC的长度,它们之间有什么数量关系,你能得出你能验证你的结论吗?什么结论?探究新知证明:过A作AD平分∠BAC交BC于点D.在△ABD与△ACD,△ABC是等∠1=∠2,腰三角形.∠B=∠C,AAD=AD,1(2(∴△ABD≌△ACD(AAS).BC∴AB=AC.D探究新知归纳总结等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”,这又是一个判定两条线段相等的根据之一).应用格式:A在△ABC中,∵∠B=∠C,(已知)∴AC=AB.(等角对等边)((BC即△ABC为等腰三角形.探究新知【思考】如图,下列推理正确吗?AC12D1A2BBDC∵∠1=∠2,∵∠1=∠2,∴BD=DC(等角对等边).∴DC=BC(等角对等边).错,因为都不是在同一个三角形中.探究新知素养考点1利用等腰三角形的判定定理判定三角形的形状例1求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:如图,∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.E证明:∵AD∥BC,(1∴∠1=∠B(两直线平行,同位角相等),A(2D∠2=∠C(两直线平行,内错角相等).又∵∠1=∠2,∴∠B=∠C,∴AB=AC(等角对等边).BC巩固练习已知:如图,AB=DC,BD=CA,BD与CA相交于点E.求证:△AED是等腰三角形.证明:∵AB=DC,BD=CA,AD=DA,∴△ABD≌△DCA(SSS),∴∠ADB=∠DAC(全等三角形的对应角相等),∴AE=DE(等角对等边),∴△AED是等腰三角形.探究新知素养考点2由平行及角平分线识别等腰三角形例2已知:如图,AD∥BC,BD平分∠ABC.求证:AB=AD.证明:∵AD∥BC,AD∴∠ADB=∠DBC.∵BD平分∠ABC,BC∴∠ABD=∠DBC,∴∠ABD=∠ADB,总结:平分角+平行=等腰三角形∴AB=AD.巩固练习如图,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD等于__3_c_m___.如图,把一张长方形的纸沿着对角线折叠,重合部分是一个等腰三角形吗?为什么?答:是.AD由折叠可知,∠EBD=∠CBD.E∵AD∥BC,∴∠EDB=∠CBD,∴∠EDB=∠EBD,∴BE=DE,△EBD是等腰三角形.BC探究新知素养考点3通过计算角相等来证明等腰三角形例3如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F,求证:△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.探究新知方法点拨“等角对等边”是判定等腰三角形的重要依据,它的前提条件是“在同一个三角形中”.巩固练习如图所示,在△ABC中,AB=AC,点D,E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是(C)A.4B.5C.6D.7解析:∵AB=AC,∠ABC=36°,∴∠BAC=108°,∴∠BAD=∠DAE=∠EAC=36°,∴等腰三角形有△ABC,△ABD,△ADE,△ACE,△ACD,△ABE,共有6个.探究新知素养考点4利用尺规作图作等腰三角形例4已知等腰三角形底边长为a,底边上的高的长为h,求作等腰△ABC.使底边BC=a,底边上的高为h.ahC作法:1.作线段AB=a.2.作线段AB的垂直平分线MN,交AB于点D.M3.在MN上取一点C,使DC=h.ADB4.连接AC,BC,则△ABC即为所求.N探究新知素养考点5利用等腰三角形的判定证明线段之间的关系例5如图,在△ABC中,AB=AC,∠ABC和∠ACB的平分线交于点O.过O作EF∥BC交AB于E,交AC于F.若AB≠AC,其他条探究EF,BE,FC之间的关系.件不变,图中还有解:EF=BE+CF.等腰三角形吗?结理由如下:∵EF∥BC,论还成立吗?∴∠EOB=∠CBO,∠FOC=∠BCO.A∵BO,CO分别平分∠ABC,∠ACB,A∴∠CBO=∠ABO,∠BCO=∠ACO,∴∠EOB=∠ABO,∠FOC=∠ACO,OEOEFF∴BE=OE,CF=OF,BCBC∴EF=EO+FO=BE+CF.探究新知方法点拨判定线段之间的数量关系,一般做法是通过证明线段所在的两个三角形全等或利用同一个三角形中“等角对等边”,运用转化思想,解决问题.巩固练习在ΔABC中,OB平分∠ABC,OC平分∠ACB,过O点作MN∥BC.ΔAMN的周长=AB+AC吗?为什么?A解:∵OB平分∠ABC,∴∠1=∠2,又∵MN∥BC,∴∠2=∠3,∴∠1=∠3.∴OM=BM.同理得:ON=CN.MON∵MN=OM+ON,1365∴MN=BM+CN.24BC∴ΔAMN的周长=AM+MN+AN=AM+BM+CN+AN=AB+AC.连接中考在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是(C)A.BC=ECB.EC=BEC.BC=BED.AE=EC解析:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.课堂检测基础巩固题1.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的角平分线,则图中的等腰三角形有(A)A.5个B.4个C.3个D.2个2.一个三角形的一个外角为130°,且它恰好等于一个不相邻的内角的2倍.这个三角形是(C)A.钝角三角形B.直角三角形C.等腰三角形D.等边三角形课堂检测3.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有(D)A.1个B.2个C.3个D.4个b1OAa课堂检测4.如图,已知∠A=36°,∠DBC=36°,∠C=72°,则∠DBC=_36_°___,∠BDC=__7_2°__,图中的等腰三角形有_△__A_B__C_、_△__D_B_A_、_△__B_C_D_____.A第4题图DBC第5题图5.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为___9__.课堂检测能力提升题1.如图,上午10时,一条船从A处出发以20海里每小时的速度向正北航行,中午12时到达B处,从A、B望灯塔C,测得∠NAC=40°,∠NBC=80°.求从B处到灯塔C的距离.解:∵∠NBC=∠A+∠C,N北C80°∴∠C=80°–40°=40°,B∴∠C=∠A,∴BA=BC(等角对等边).40°∵AB=20×(12–10)=40(海里),∴BC=40海里.A答:B处距离灯塔C为40海里.课堂检测2.(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.课堂检测证明:(A类)连接AC,∵AB=BC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即BAD=∠BCD;(B类)连接AC,∵AB=BC,∴∠BAC=∠BCA,又∵∠BAD=∠BCD,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.课堂检测拓广探索题在△ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形画出来?3种“补出”方法:A方法1:量出∠C度数,画出∠B=∠C,∠B与∠C的边相交得到顶点A.方法2:作BC边上的垂直平分线,与∠C的一边相交得到顶点A.BC方法3:对折.课堂小结等角对等边注意是指同一个三角形中等腰三角形的判定定义有两边相等的三角形是等腰三角形课后作业教材作业从课后习题中选取作业内容自主安排配套练习册练习谢谢观看ThankYou!

相关推荐