当前位置: 首页 > 初中 > 数学 > 人教版九年级数学上册《21-2-4 一元二次方程的根与系数的关系》教学课件PPT初三优秀公开课

人教版九年级数学上册《21-2-4 一元二次方程的根与系数的关系》教学课件PPT初三优秀公开课

pdf 2021-11-24 16:00:48 28页
剩余18页未读,查看更多需下载
人教版数学九年级上册21.2.4一元二次方程的根与系数的关系导入新知1.一元二次方程的求根公式是什么?2bb4ac2x(b4ac0).2a2.如何用判别式b2-4ac来判断一元二次方程根的情况?对一元二次方程:ax2+bx+c=0(a≠0).b2-4ac>0时,方程有两个不相等的实数根.b2-4ac=0时,方程有两个相等的实数根.b2-4ac<0时,方程无实数根.【想一想】方程的两根x1和x2与系数a、b、c还有其他关系吗?素养目标3.让学生体会从特殊到一般的科学探究过程.2.不解方程利用一元二次方程的根与系数的关系解决问题.1.探索一元二次方程的根与系数的关系.探究新知知识点1根与系数的关系填表,观察、猜想方程x,xx+xx.x121212x2-2x+1=01,121x2+3x-10=02,-5-3-10x2+5x+4=0-1,-4-54【思考】你发现什么规律?①用语言叙述你发现的规律;②x2+px+q=0的两根x,x用式子表示你发现的规律.1,2探究新知【猜一猜】(1)若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?(x-x1)(x-x2)=0.x2-(x1+x2)x+x1·x2=0,x2+px+q=0,x1+x2=-p,x1·x2=q.探究新知如果关于x的方程x2pxq0的两根是x1,x2,则:x1+x2=-p,x1·x2=q如果方程二次项系数不为1呢?探究新知方程x,xx+xx.x121212132x2-3x-2=0−,2-1221413x2-4x+1=0,1333问题:上面发现的结论在这里成立吗?请完善规律.①用语言叙述发现的规律;②ax2+bx+c=0的两根x,x用式子表示你发现的规律.1,2探究新知一元二次方程的根与系数的关系:(韦达定理)如果方程ax2+bx+c=0(a≠0)的两个根是x1,x2,bc那么x1+x2=-,x1x2=常数项aa一次项系数注意系数符号.二次项系数学生活动:请同学用求根公式证明.【注意】能用根与系数的关系的前提条件为b2-4ac≥0.探究新知素养考点1一元二次方程的根与系数的关系的应用例1利用根与系数的关系,求下列方程的两根之和、两根之积.(1)x2+7x+6=0;解:这里a=1,b=7,c=6.Δ=b2-4ac=72–4×1×6=25>0.∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=-7,x1x2=6.探究新知(2)2x2-3x-2=0.解:这里a=2,b=-3,c=-2.Δ=b2-4ac=(-3)2–4×2×(-2)=25>0,∴方程有两个实数根.设方程的两个实数根是x1,x2,那么3x1+x2=,x1x2=-1.2巩固练习不解方程,求方程两根的和与两根的积:①x2+3x-1=0②2x2-4x+1=0xx3,二次项不是1,解:①12x1x21.可以先把它化1为12②原方程可化为:x2x021x1x22,x1x2.2探究新知素养考点2利用根与系数的关系求字母的值或取值范围例2已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k的值.解:设方程的两个根分别是x1,x2,其中x1=2.6所以:x1·x2=2x2=,53即:x2=5.想一想,还3k由于x+x=2+()=,有没有别的1255做法?得:k=-7.3答:方程的另一个根是5,k=-7.巩固练习已知方程x2-(k+1)x+3k=0的一个根是2,求它的另一个根及k的值.解:设方程的另一个根为x1.把x=2代入方程,得4-2(k+1)+3k=0.解这方程,得k=-2.由根与系数关系,得x1●2=3k,即2x1=-6.∴x1=-3.答:方程的另一个根是-3,k的值是-2.探究新知素养考点3利用根与系数的关系求两根的平方和、倒数和例3不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.解:根据根与系数的关系可知:31xx,xx.1212222221∵x1x2x12x1x2x2,22223113∴x1x2x1x22x1x22;22411xx312123.x1x2x1x222巩固练习设x1,x2为方程x2-4x+1=0的两个根,则:(1)x1+x2=4,(2)x1·x2=1,2(3)(x1x2)12,x2x214(4)12.探究新知素养考点4根与系数关系的综合题目例4设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且x12+x22=4,求k的值.解:由方程有两个实数根,得Δ=4(k-1)2-4k2≥01即-8k+4≥0.∴k.2由根与系数的关系得x1+x2=2(k-1),x1x2=k2.∴x12+x22=(x1+x2)2-2x1x2=4(k-1)2-2k2=2k2-8k+4.由x12+x22=4,得2k2-8k+4=4,解得k1=0,k2=4.经检验,k2=4不合题意,舍去.探究新知归纳总结11x1x22221.;2.xx(xx)2xx;121212x1x2x1x2xx2223.12x1x2(x1x2)2x1x2;xxxxxx2112124.(x11)(x21)x1x2(x1x2)1;5.xx2212(x1x2)(x1x2)4x1x2.求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.巩固练习当k为何值时,方程2x2-(k+1)x+k+3=0的两根差为1.解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1.∵(x2-x1)2=(x1+x2)2-4x1x2k1k3由根与系数的关系得x1+x2=,x1x2=.22k1k3∴(2)2-4×=1.2解得k1=9,k2=-3.当k=9或-3时,由于Δ>0,∴k的值为9或-3.连接中考2一元二次方程x﹣2x=0的两根分别为x1和x2,则x1x2为(D)A.﹣2B.1C.2D.0课堂检测基础巩固题21.如果-1是方程2x-x+m=0的一个根,则另一个3-3根是__2_,m=____.2.已知一元二次方程x2+px+q=0的两根分别为-2和1,则:p=1,q=-2.课堂检测3.已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值.解:将x=1代入方程中:3-19+m=0.解得m=16,设另一个根为x1,则:c161×x1=.a3∴x=161.3课堂检测4.已知x1,x2是方程2x2+2kx+k-1=0的两个根,且(x1+1)(x2+1)=4;(1)求k的值;(2)求(x1-x2)2的值.k1解:(1)根据根与系数的关系x1x2k,x1x2.2k1得(x1+1)(x2+1)=x1x2+(x1+x2)+1=2(k)14,解得:k=-7;xx7,xx4.(2)因为k=-7,所以1212222则:(x1x2)(x1x2)4x1x274(4)65.课堂检测能力提升题设x1,x2是方程3x2+4x–3=0的两个根.利用根系数之间的关系,求下列各式的值.xx21(1)(x1+1)(x2+1);(2).xx12b4cxx,xx1.解:根据根与系数的关系得:1212a3a44(1)(x1+1)(x2+1)=x1x2+x1+x2+1=(-1)1;33222xxxx(xx)-2xx3421121212.(2)xxxxxx9121212课堂检测拓广探索题1.当k为何值时,方程2x2-kx+1=0的两根差为1.解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1,由根与系数的关系,得k1xx,xx,121222∵(x1-x2)2=(x1+x2)2-4x1x2=1,22k1k∴41,∴3,222∵△>0,∴k23.课堂检测2.已知关于x的一元二次方程mx2-2mx+m-2=0(1)若方程有实数根,求实数m的取值范围.(2)若方程两根x1,x2满足∣x1-x2∣=1求m的值.解:(1)方程有实数根(2)∵方程有实数根x1,x22m2D=b-4ac∴xx2,xx.12122m=(-2m)-4鬃m(m-2)∵(x1-x2)2=(x1+x2)2-4x1x2=122=4m-4m+8mm2∴2241.=8m³0.m解得m=8.∴m的取值范围为m>0.经检验m=8是原方程的解.课堂小结如果一元二次方程内容ax2+bx+c=0(a≠0)的两个根分别是x1、x2,那么bcxxxgx1212根与系数的关系aa(韦达定理)222xx(xx)2xx121212应用22(xx)(xx)4xx12121211xx12xxxx1212课后作业教材作业从课后习题中选取作业内容自主安排配套练习册练习谢谢观看ThankYou!

相关推荐