1.3.1 有理数的加法 第1课时 有理数的加法运算律 导学案
doc
2022-07-27 16:44:02
8页
1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法一、新课导入1.课题导入:(1)教师提问:前面我们学习了有理数,有理数有几种分类方法?(2)学生回答后,教师口述:在小学,我们学过正数及0的加法运算,引入负数后,怎样进行加法运算呢?日常生活中也会遇到与负数有关的加法运算.例如,在本章引言中,我们曾看到一张“收支情况表”,那里把收入记作正数,支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4.0+(-5.2)等.(3)教师再提问:小学学过正数与正数相加,正数与0相加,引入负数后,加法会出现哪些新的情况?(4)学生回答后,教师导入课题,这节课我们就从这几个方面来探讨有理数加法的法则.2.三维目标:(1)知识与技能经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.(2)过程与方法①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力.②获得渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.\n(3)情感态度①通过观察、归纳、推断得到数学猜想,体验数学的探索性和创造性.②运用知识解决问题的成功体验.3.学习重、难点:重点:有理数的加法法则.难点:分情况讨论有理数的加法法则思路的建立;异号两数相加的法则.二、分层学习1.自学指导:(1)自学内容:探究有理数加法的法则.(2)自学时间:10分钟.(3)自学要求:借助数轴,用数形结合的方法理解有理数加法法则.注意法则的两个方面:和的符号与绝对值的和.(4)探究提纲:①问题1:一个物体作左右运动,我们规定向右为正,向左为负.向右运动5m记作5m,向左运动5m记作-5m,如果物体先向右运动5m,再向右运动3m,那么两次运动的最后结果是什么?可以用怎样的算式表示?这个问题我们可以借助于数轴表示运动过程与结果,进而列出算式.a.用原点表示第一次运动的起点.b.第二次运动的起点是第一次运动的终点.c.由第二次运动的终点与原点的相对位置得出两次运动的结果.\n由图示可知两次运动的结果是:从起点向右运动了8m,写成算式是5+3=8.②你能模仿上述过程,解决下面的问题吗?问题2:如果物体先向左运动5m,再向左运动3m,那么两次运动的最后结果是什么?可以用怎样的算式表示?最后结果是从起点向左运动了8m,写成算式是(-5)+(-3)=-8.③根据上面两个问题所列算式,你能从“符号”和“绝对值”两个方面,用一句话概括一下上述两种情况的运算方法吗?符号相同的两个数相加,结果的符号不变,绝对值相加.④类比前面的研究过程,探究下列问题:问题3:如果物体先向左运动了3m,再向右运动5m,那么两次运动的最后结果怎样?如何用算式表示?结果是:从起点向右运动了2m,-3+5=2.问题4:如果物体先向右运动了3m,再向左运动5m,那么两次运动的最后结果怎样?如何用算式表示?结果是:从起点向左运动了2m,3+(-5)=-2.从“符号”和“绝对值”\n两个方面,概括问题3和问题4这两种情况下的运算方法:符号相反但绝对值不相等的两个数相加,结果的符号与绝对值较大的加数的符号相同,结果的绝对值等于较大的绝对值减去较小的绝对值.⑤如果物体先向右运动5m,再向左5m,那么两次运动的最后结果是仍在起点处,写成算式是5+(-5)=0.这说明:互为相反数的两个数相加,结果为0.⑥如果物体第1s向右运动5m,第2s原地不动,那么2s后的结果是从起点向右运动了5m,写成算式是5+0=5;如果物体第1s向左运动5m,第2s原地不动,那么2s后的结果是从起点向左运动了5m,写成算式是(-5)+0=-5.由这两个算式可以得出结论:一个数同0相加,仍是这个数.⑦你能从上述所列算式中归纳出有理数加法的运算法则吗?同桌相互交流一下.2.自学:同学们结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:深入学生之中,了解学生在探究中作图、列式、归纳结论是否正确.②差异指导:指导学困生弄清探究中的作图,列算式及法则的归纳.(2)生助生:学生相互帮助解决一些自学中的疑难问题.4.强化:有理数的加法法则.1.自学指导:(1)自学内容:教材第18页例1.(2)自学时间:3分钟.(3)自学要求:进行有理数加法运算时,通过例题学习,掌握计算方法.(4)自学参考提纲:\n①应用法则计算时,先定符号,再算绝对值.②用算式表示下面的结果:a.温度由-4℃上升7℃;b.收入7元,又支出5元.结果收入多少元?a.-4+7=3;b.7-5=2③计算:a.(-4)+(-6)=-10b.4+(-6)=-2c.(-4)+6=2d.(-4)+4=0e.(-4)+14=10f.(-14)+4=-10g.6+(-6)=0h.0+(-6)=-62.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:深入学生之中,看学生做计算时思考过程及步骤是否正确.②差异指导:对个别法则运用不熟的同学进行强化记忆,查找法则运用中的不当之处在哪里.(2)生助生:学生通过交流解决一些自学中的疑难问题.4.强化:(1)在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算绝对值的和(或差).即“一看、二定、三算”.(2)判断题:\n①两个负数的和一定是负数.(√)②绝对值相等的两个数的和等于零.(×)③若两个有理数相加时的和为负数,这两个有理数一定都是负数.(×)④若两个有理数相加时的和为正数,这两个有理数一定都是正数.(×)⑤互为相反数的两个数的和为0.(√)三、评价1.学生的自我评价(围绕三维目标):学生相互交流各自的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中的积极表现和存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时可从学生熟悉的问题入手,让学生在具体问题中经历探索有理数加法的过程,理解有理数加法法则,并应用于实际计算中,教学采用合作探究式方法,让学生在合作中学习知识、掌握方法.教师在指导学生解决实际问题时强调,计算时先确定和的符号,再把绝对值相加或相减,不要疏忽出错.一、基础巩固(70分)\n1.(10分)计算:(-7)+(+5)=-2;(-3)+3=0;(-4)+5=1.2.(10分)上升10米,再上升-3米,则共上升了7米.3.(10分)甲地的海拔高度是-63米,乙地比甲地高24米,丙地比乙地高72米,则乙地的海拔高度是-39米,丙地的海拔高度是33米.4.(20分)两个有理数的和为负数,则这两个数一定(C).A.都是负数B.只有一个负数C.至少有一个负数D.无法确定5.(20分)计算:(1)(-10)+(+6)=-4(2)(+12)+(-4)=8(3)(-5)+(-7)=-12(4)(+6)+(-9)=-3(5)(-0.9)+(-2.7)=-3.6(6)+(-)=-(7)(-)+=(8)(-3)+(-1)=-二、综合应用(20分)6.(10分)如果|a|=3,|b|=2,则|a+b|等于(C)A.5B.1C.5或1D.±5或±17.(10分)请你用生活中的例子解释算式(+3)+(-3)=0;(-1)+(-2)=-3.解:①\n冬季某天早晨温度为0度,到中午气温上升了3度,再到下午又下降了3度,下午气温为0度;②取向东为正方向,先向西走了1km,后又走了2km,一共向西走了3km.三、拓展延伸(10分)8.(10分)数a,b表示的点如图所示,则(1)a+b>0;(2)a+(-b)<0;(3)(-a)+b>0;(4)(-a)+(-b)<0.(填“>”“<”或“=”)