1.5.1 乘方 第2课时 有理数的混合运算 教案
doc
2022-07-27 16:44:03
5页
第2课时有理数的混合运算【知识与技能】了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.【过程与方法】能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【情感态度】培养学生对数的感觉,提高学生正确运算的能力,培养学生思维的逻辑性和灵活性,进一步发展学生的思维能力.【教学重点】有理数的混合运算顺序是确定的.【教学难点】根据有理数的混合运算顺序,正确地进行有理数的混合运算.一、情境导入,初步认识计算:3-(-2)3×6.这个式子先算什么,后算什么?【教学说明】教师引导学生做这道题,让学生说一说运算顺序,接着师生共同归纳出下面的结论.【归纳结论】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.二、典例精析,掌握新知例1计算下列各题:\n【分析】按照有理数混合运算的顺序——先算括号,再乘方,然后算乘除,最后算加减进行计算,每步计算先确定符号再计算结果.【教学说明】有理数的计算要遵循先观察,后计算,先确定符号,再计算结果的原则;观察时,先看每个算式可以用括号和“+、-”\n号分成几个部分(如第(1)题可分为三部分,第(2)题可分为两部分),再看每个部分能否进行简算(如\[21×317-713×722÷312\]2及(0.12510×89)均可进行简算),乘除法中带分数一般化为假分数进行计算.完成此例题后,教师让学生自行阅读教材第43~44页例3、例4.试一试教材第44页练习.例2观察下面三行数:1,4,9,16,25,…;①0,3,8,15,24,…;②4,7,12,19,28,…;③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第12个,计算这三个数的和.分析通过比较可以发现,第②③行数据都是在①的基础上进行加减后得到的,所以根据这个思路很容易知道怎么解题.解:(1)第①行数是12,22,32,42,52,….(2)对比①②两行中的数据,可以发现:第②行数是第①行相应数减1,即12-1,22-1,32-1,42-1,52-1,….对比①③两行中的数据,可以发现,第③行数是第①行相应数加3,即12+3,22+3,32+3,42+3,52+3,….(3)每行第12个数是122,122-1,122+3,其和是122+122-1+122+3=434.【教学说明】这道例题与课本上的例题比较类似,教师可事先让学生学习教材例4后再解这道题.例3已知y=ax5+bx3+cx-5,当x=-3时,y=7;求x=3的y的值.解:当x=-3时,y=a·(-3)5+b·(-3)3+c·(-3)-5=-35a-33b-3c-5=7,∴35a+33b+3c=-12那么,当x=3时,y=35a+33b+3c-5=-12-5=-17【教学说明】本题重在让学生体会整体思想的运用.\n三、运用新知,深化理解1.计算下列各题.2.根据下表,探索规律:根据规律写出37与320的个位数字.【教学说明】第1题中的几道题都是有关混合运算的题,教师先让学生思考,再让学生在黑板上解答,然后全体学生共同订正,总结规律与注意事项.第2题为探索题,教师可与学生共同探索,提示学生注意看个位数字的变化规律.\n2.解:由表格知,3n中,当n是连续自然数变化时,幂3n的个位数字是3,9,7,1,3,9,7,1,…周期变化,且四个数为一个周期,易知37的个位数字为7,20÷4=5,则320的个位数字与第四个数的个位数字相同,即320的个位数字与34的个位数字相同,为1.四、师生互动,课堂小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算;2.在运算中要注意像-72与(-7)2等这类式子的区别.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.本课时教学重在培养学生计算能力,要求学生先通过交流,正确归纳出有理数混合运算顺序,再在实际解题过程中寻找规律,发现问题,学生间互相辨析指正.教师在指导过程中,强调学生对易错点特别警醒,解题时仔细分析问题结构特征,合理选择步骤和运算律.