当前位置: 首页 > 初中 > 数学 > 2022七年级数学上学期期中试卷(冀教版)

2022七年级数学上学期期中试卷(冀教版)

doc 2022-07-28 19:00:05 11页
剩余9页未读,查看更多需下载
期中数学试卷 一、选择题1.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有(  )A.①②B.①③C.②④D.③④2.如图,以A,B,C,D,E为端点,图中共有线段(  )A.7条B.8条C.9条D.10条3.某公司员工分别住在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人.三个区在一条直线上,位置如图所示.公司的接送打算在此间只设一个停靠点,要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在(  )A.A区B.B区C.C区D.不确定4.零上13℃记作+13℃,零下2℃可记作(  )A.2B.﹣2C.2℃D.﹣2℃5.下列各组数中,互为相反数的是(  )A.﹣(+7)与+(﹣7)B.+(﹣)与﹣(+0.5)C.+(﹣0.01)与﹣(﹣)D.﹣1与6.一个数比它的相反数小,这个数是(  )A.正数B.负数C.非负数D.非正数7.计算(﹣3)3+52﹣(﹣2)2之值为何(  )A.2B.5C.﹣3D.﹣68.计算1+2﹣3﹣4+5+6﹣7﹣8+…+2009+2010﹣2011﹣2012=(  )11\nA.0B.﹣1C.2012D.﹣20129.下列运算结果等于1的是(  )A.(﹣3)+(﹣3)B.(﹣3)﹣(﹣3)C.﹣3×(﹣3)D.(﹣3)÷(﹣3)10.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,则∠BOD的大小为(  )A.22°B.34°C.56°D.90°11.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是(  )A.∠1=∠3B.∠1=180°﹣∠3C.∠1=90°+∠3D.以上都不对12.如图,△ABC绕点A旋转一定角度得到△ADE,则BC=4,AC=3,则下列说法正确的是(  )A.DE=3B.AE=4C.∠CAB是旋转角D.∠CAE是旋转角二、填空题13.下列说法中正确的有  (把正确的序号填到横线上).①延长直线AB到C;②延长射线OA到C;③延长线段OA到C;④经过两点有且只有一条线段;⑤射线是直线的一半.14.∠A的补角为125°12′,则它的余角为  .15.﹣9,6,﹣3三个数的和比它们绝对值的和小  .16.一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑  台.17.﹣的倒数是  ;1的相反数是  .18.若0<a<1,则a,a2,的大小关系是  .19.当钟表上的分针旋转120°时,时针旋转  .11\n20.如图,点O是直线AD上一点,射线OC、OE分别是∠AOB,∠BOD的平分线,若∠AOC=28°,则∠COD=  ,∠BOE=  .三、解答题21.请你作出如图所示的四边形ABCD绕点O顺时针旋转75度后的图形.(不用写作法,但要保留作图痕迹)22.若m>0,n<0,|n|>|m|,用“<”号连接m,n,|n|,﹣m,请结合数轴解答.23.已知x与y互为相反数,m与n互为倒数,|a|=1.求:a2﹣(x+y+mn)a﹣(x+y)2011+(﹣mn)2012的值.24.已知|a|=3,|b|=5,且a<b,求a﹣b的值.25.计算:(1)(﹣+)×(﹣36);(2)[2﹣5×()2]÷();(3)×﹣()×+()÷;(4)﹣14﹣[1﹣(1﹣0.5×)×6].26.如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)指出图中∠AOD与∠BOE的补角;(2)试说明∠COD与∠COE具有怎样的数量关系.11\n27.如图,已知∠AOM与∠MOB互为余角,且∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果已知中∠AOB=80°,其他条件不变,求∠MON的度数;(3)如果已知中∠BOC=60°,其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)中你能看出有什么规律.28.如图,点C在线段AB上,AC=10cm,CB=8cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若点C为线段AB上任一点,满足AC+CB=a(cm),M、N分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由.(3)若点C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.11\n参考答案 一、选择题1.【解答】解:①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.故选:D.2.【解答】解:方法一:图中线段有:AB、AC、AD、AE;BC、BD、BE;CD、CE;DE;共4+3+2+1=10条;方法二:共有A、B、C、D、E五个端点,则线段的条数为=10条.故选:D.3.【解答】解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m;当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m;当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m.∴当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.4.【解答】解:“正”和“负”相对,由零上13℃记作+13℃,则零下2℃可记作﹣2℃.故选:D.5.【解答】解:A、﹣(+7)=﹣7与+(﹣7)=﹣7相等,不是互为相反数,故本选项错误;B、+(﹣)=﹣与﹣(+0.5)=﹣0.5相等,不是互为相反数,故本选项错误;C、+(﹣0.01)=﹣0.01与﹣(﹣)=是互为相反数,故本选项正确;D、﹣1与不是互为相反数,故本选项错误.故选:C.6.【解答】解:根据相反数的定义,知一个数比它的相反数小,则这个数是负数.11\n故选:B.7.【解答】解:(﹣3)3+52﹣(﹣2)2=﹣27+25﹣4=﹣6,故选D.8.【解答】解:原式=1+[(2﹣3)+(﹣4+5)+(6﹣7)+(﹣8+9)+…+(2006﹣2007)+(﹣2008+2009)]+(2010﹣2011)﹣2012=1﹣1﹣2012=﹣2012.故选:D.9.【解答】解:A、(﹣3)+(﹣3)=﹣6,故错误;B、(﹣3)﹣(﹣3)=0,故错误;C、﹣3×(﹣3)=9,故错误;D、(﹣3)÷(﹣3)=1,故正确.故选:D.10.【解答】解:∵∠COE是直角,∠COF=34°,∴∠EOF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠EOF=56°,∴∠AOC=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故选:A.11.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:C.12.【解答】解:∵△ABC绕点A旋转一定角度得到△ADE,BC=4,AC=3.∴DE=BC=4;AE=AC=3;∠CAE是旋转角.故选D.二、填空题13.【解答】解:①延长直线AB到C,说法错误;②延长射线OA到C,说法错误;③延长线段OA到C,说法正确;④经过两点有且只有一条线段,线段是连接两点,过两点是作直线,故说法错误;11\n⑤射线是直线的一半,说法错误;故答案为:③.14.【解答】解:∠A的补角为125°12′,则∠α=180°﹣132°47′,那么∠α的余角的度数是90°﹣∠α=35°12′.故答案为35°12′.15.【解答】解:(9+6+3)﹣(﹣9+6﹣3)=24.答:﹣9,6,﹣3三个数的和比它们绝对值的和小24.16.【解答】解:根据题意,得100+38+(﹣42)+27+(﹣33)+(﹣40)=100+38﹣42+27﹣33﹣40=165﹣115=50.故答案为:50.17.【解答】解:根据倒数和相反数的定义可知:﹣的倒数是﹣3;1的相反数是﹣1.故答案为:﹣3;﹣1.18.【解答】解:∵0<a<1,∴0<a2<a,∴>1,∴>a>a2.故答案为:>a>a2.19.【解答】解:∵钟表上的分针旋转120°时,∴分针走了=20分钟,∴时针旋转的角度=20×0.5°=10°.故答案为10°.20.【解答】解:∵∠AOC+∠COD=180°,∠AOC=28°,11\n∴∠COD=152°;∵OC是∠AOB的平分线,∠AOC=28°,∴∠AOB=2∠AOC=2×28°=56°,∴∠BOD=180°﹣∠AOB=180°﹣56°=124°,∵OE是∠BOD的平分线,∴∠BOE=∠BOD=×124°=62°.故答案为:152°、62°.三、解答题21.【解答】解:所作图形如图所示:.22.【解答】解:因为n<0,m>0,|n|>|m|>0,∴n<﹣m<0,将m,n,﹣m,|n|在数轴上表示如图所示:用“<”号连接为:n<﹣m<m<|n|.23.【解答】解:由题意得x+y=0,mn=1,a=±1.(1)当a=1时,原式=12﹣(0+1)×1﹣02011+(﹣1)2012=1﹣1﹣0+1=1;(2)当a=﹣1时,原式=(﹣1)2﹣(0+1)×(﹣1)﹣02011+(﹣1)2012=1+1﹣0+1=3.故a2﹣(x+y+mn)a﹣(x+y)2011+(﹣mn)2012的值为1或3..24.【解答】解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a<b,∴当a=3时,b=5,则a﹣b=﹣2.当a=﹣3时,b=5,则a﹣b=﹣8.11\n25.【解答】解:(1)(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣18+20﹣21=﹣19;(2)[2﹣5×(﹣)2]÷(﹣)=(2﹣5×)×(﹣4)=2×(﹣4)﹣5××(﹣4)=﹣8+5=﹣3;(3)1×﹣()×+()÷=1×﹣()×+()×=(1+)×=×=2(4)﹣14﹣[1﹣(1﹣0.5×)×6]=﹣1﹣[1﹣(1﹣)×6]=﹣1﹣(1﹣×6)=﹣1﹣(1﹣5)=﹣1+4=3.26.【解答】解:(1)与∠AOD互补的角∠BOD、∠COD;与∠BOE互补的角∠AOE、∠COE.(2)∠COD+∠COE=∠AOB=90度.(提示:因为OD平分∠BOC,所以∠COD=∠BOC).又OE平分∠AOC,所以∠COE=∠AOC,11\n所以∠COD+∠COE=∠BOC+∠AOC=(∠BOC+∠AOC),所以∠COD+∠COE=∠AOB=90°.27.【解答】解:(1)因OM平分∠AOC,所以∠MOC=∠AOC.又ON平分∠BOC,所以∠NOC=∠BOC.所以∠MON=∠MOC﹣∠NOC=∠AOC﹣∠BOC=∠AOB.而∠AOB=90°,所以∠MON=45度.(2)当∠AOB=80°,其他条件不变时,∠MON=×80°=40度.(3)当∠BOC=60°,其他条件不变时,∠MON=45度.(4)分析(1)、(2)、(3)的结果和(1)的解答过程可知:∠MON的大小总等于∠AOB的一半,而与锐角∠BOC的大小变化无关.28.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=5cm,CN=BC=4cm,∴MN=CM+CN=5+4=9cm;(2)MN=a(cm),理由如下:同(1)可得CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=a(cm).(3)MN=b(cm),如图所示:根据题意得:AC﹣CB=b,AM=MC=AC,CN=BN=CB,∴NM=BM+BN=(MC﹣BC)+BC=(AC﹣BC)+BC=AC+(﹣BC+BC)=AC﹣BC=11\n(AC﹣BC)=b(cm).11

相关推荐