2022七年级数学上册第2章整式加减单元综合试卷(沪科版)
docx
2022-07-31 19:00:07
11页
第2章整式加减单元综合测评一、选择题(共10小题,每小题3分,满分30分)1.单项式﹣3πxy2z3的系数是()A.﹣πB.﹣1C.﹣3πD.﹣32.下面计算正确的是()A.3x2﹣x2=3B.3a2+2a3=5a5C.3+x=3xD.﹣0.25ab+ba=03.下列运算中,正确的是()A.3a+5b=8abB.3y2﹣y2=3C.6a3+4a3=10a6D.5m2n﹣3nm2=2m2n4.下列去括号正确的是()A.﹣(2x+5)=﹣2x+5B.C.D.5.若单项式2xnym﹣n与单项式3x3y2n的和是5xny2n,则m与n的值分别是()A.m=3,n=9B.m=9,n=9C.m=9,n=3D.m=3,n=36.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5B.﹣1,6C.﹣3π,6D.﹣3,77.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是()A.20B.18C.16D.158.已知2x3y2和﹣x3my2是同类项,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣289.已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是()A.abB.a+bC.10a+bD.100a+b10.原产量n吨,增产30%之后的产量应为()A.(1﹣30%)n吨B.(1+30%)n吨C.n+30%吨D.30%n吨二、填空题(每小题3分,共18分)11.单项式的系数是__________,次数是__________.-11-\n12.多项式2x2y﹣+1的次数是__________.13.任写一个与﹣a2b是同类项的单项式__________.14.多项式3x+2y与多项式4x﹣2y的差是__________.15.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买两支铅笔和三块橡皮,则一共需付款__________元.16.按如图程序输入一个数x,若输入的数x=﹣1,则输出结果为__________.三、计算:(每小题20分,共20分)17.(1)a+2b+3a﹣2b.(2)(3a﹣2)﹣3(a﹣5)(3)3x2﹣3x2﹣y2+5y+x2﹣5y+y2.(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)四、先化简下式,再求值.(每小题6分,共12分)18.化简求值:3a2b﹣[2ab2﹣2(﹣a2b+4ab2)]﹣5ab2,其中a=﹣2,b=.19.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x)+3(x2y2+y),其中x=﹣1,y=2.五、解答题:(每小题分,共20分)20.已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.21.计算某个整式减去多项式ab﹣2bc+3a+bc+8ac时,一个同学误认为是加上此多项式,结果得到的答案是-11-\n﹣2ab+bc+8ac.请你求出原题的正确答案.单元测试解析一、选择题(共10小题,每小题3分,满分30分)1.单项式﹣3πxy2z3的系数是()A.﹣πB.﹣1C.﹣3πD.﹣3【考点】单项式.【分析】依据单项式的系数的定义解答即可.【解答】解:单项式﹣3πxy2z3的系数是﹣3π.故选:C.【点评】本题主要考查的是单项式系数,明确π是一个数轴不是一个字母是解题的关键.2.下面计算正确的是()A.3x2﹣x2=3B.3a2+2a3=5a5C.3+x=3xD.﹣0.25ab+ba=0【考点】整式的加减.-11-\n【分析】先判断是否为同类项,若是同类项则按合并同类项的法则合并.【解答】解:A、3x2﹣x2≠=2x2=3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与x不可相加,故C错误;D、﹣0.25ab+ba=0,故D正确.故选:D.【点评】此题考查了合并同类项法则:系数相加减,字母与字母的指数不变.3.下列运算中,正确的是()A.3a+5b=8abB.3y2﹣y2=3C.6a3+4a3=10a6D.5m2n﹣3nm2=2m2n【考点】合并同类项.【分析】根据合并同类项的法则结合选项进行求解,然后选出正确选项.【解答】解:A、3a和5b不是同类项,不能合并,故本选项错误;B、3y2﹣y2=2y2,计算错误,故本选项错误;C、6a3+4a3=10a3,计算错误,故本选项错误;D、5m2n﹣3nm2=2m2n,计算正确,故本选项正确.故选D.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.4.下列去括号正确的是()A.﹣(2x+5)=﹣2x+5B.C.D.【考点】去括号与添括号.【专题】常规题型.【分析】去括号时,若括号前面是负号则括号里面的各项需变号,若括号前面是正号,则可以直接去括号.【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;-11-\nB、﹣(4x﹣2)=﹣2x+1,故本选项错误;C、(2m﹣3n)=m﹣n,故本选项错误;D、﹣(m﹣2x)=﹣m+2x,故本选项正确.故选D.【点评】本题考查去括号的知识,难度不大,注意掌握去括号的法则是关键.5.若单项式2xnym﹣n与单项式3x3y2n的和是5xny2n,则m与n的值分别是()A.m=3,n=9B.m=9,n=9C.m=9,n=3D.m=3,n=3【考点】合并同类项.【分析】根据同类项的概念,列出方程求解.【解答】解:由题意得,,解得:.故选C.【点评】本题考查了合并同类项,解答本题的关键是掌握同类项定义中的相同字母的指数相同.6.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5B.﹣1,6C.﹣3π,6D.﹣3,7【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π是数字,应作为系数.7.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是()-11-\nA.20B.18C.16D.15【考点】代数式求值.【专题】计算题.【分析】根据题意2a2+3a+1的值是6,从而求出2a2+3a=5,再把该式左右两边乘以3即可得到6a2+9a的值,再把该值代入代数式6a2+9a+5即可.【解答】解:∵2a2+3a+1=6,∴2a2+3a=5,∴6a2+9a=15,∴6a2+9a+5=15+5=20.故选A.【点评】本题考查了代数式求值,解题的关键是利用已知代数式求出6a2+9a的值,再代入即可.8.已知2x3y2和﹣x3my2是同类项,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣28【考点】同类项.【专题】计算题.【分析】根据同类项相同字母的指数相同可得出m的值,继而可得出答案.【解答】解:由题意得:3m=3,解得m=1,∴4m﹣24=﹣20.故选B.【点评】本题考查同类项的知识,比较简单,注意掌握同类项的定义.9.已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是()A.abB.a+bC.10a+bD.100a+b【考点】列代数式.【分析】a放在左边,则a在百位上,据此即可表示出这个三位数.【解答】解:a放在左边,则a在百位上,因而所得的数是:100a+b.故选D.-11-\n【点评】本题考查了利用代数式表示一个数,关键是正确确定a是百位上的数字.10.原产量n吨,增产30%之后的产量应为()A.(1﹣30%)n吨B.(1+30%)n吨C.n+30%吨D.30%n吨【考点】列代数式.【专题】应用题.【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨.故选B.【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系.二、填空题(每小题3分,共18分)11.单项式的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数与次数的定义解答.单项式中数字因数叫做单项式的系数.单项式的次数就是所有字母指数的和.【解答】解:单项式的系数是﹣,次数是1+2=3.故答案为﹣,【点评】本题考查了单项式的系数与次数的定义,需注意:单项式中的数字因数叫做这个单项式的系数;单项式中,所有字母的指数和叫做这个单项式的次数.12.多项式2x2y﹣+1的次数是3.【考点】多项式.【分析】多项式的次数是多项式中最高次项的次数,根据定义即可求解.【解答】解:多项式2x2y﹣+1的次数是3.故答案为:3.-11-\n【点评】本题考查了多项式的次数,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.13.任写一个与﹣a2b是同类项的单项式a2b.【考点】同类项.【专题】开放型.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可解答.【解答】解:与﹣a2b是同类项的单项式是a2b(答案不唯一).故答案是:a2b.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.14.多项式3x+2y与多项式4x﹣2y的差是﹣x+4y.【考点】整式的加减.【专题】计算题.【分析】由题意可得被减数为3x+2y,减数为4x﹣2y,根据差=被减数﹣减数可得出.【解答】解:由题意得:差=3x+2y﹣(4x﹣2y),=﹣x+4y.故填:﹣x+4y.【点评】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.15.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买两支铅笔和三块橡皮,则一共需付款60m+90n元.【考点】列代数式.【分析】根据题意列出代数式.【解答】解:由题意得:付款=60m+90n【点评】本题考查代数式的知识,关键要读清题意.-11-\n16.按如图程序输入一个数x,若输入的数x=﹣1,则输出结果为4.【考点】代数式求值.【专题】图表型.【分析】根据图示的计算过程进行计算,代入x的值一步一步计算可得出最终结果.【解答】解:当x=﹣1时,﹣2x﹣4=﹣2×(﹣1)﹣4=2﹣4=﹣2<0,此时输入的数为﹣2,﹣2x﹣4=﹣2×(﹣2)﹣4=4﹣4=0,此时输入的数为0,﹣2x﹣4=0﹣4=﹣4<0,此时输入的数为﹣4,﹣2x﹣4=﹣2×(﹣4)﹣4=8﹣4=4>0,所以输出的结果为4.故答案为:4.【点评】此题考查了代数式求值的知识,属于基础题,解答本题关键是理解图标的计算过程,难度一般,注意细心运算.三、计算:(每小题20分,共20分)17.(1)a+2b+3a﹣2b.(2)(3a﹣2)﹣3(a﹣5)(3)3x2﹣3x2﹣y2+5y+x2﹣5y+y2.(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)【考点】整式的加减.【分析】(1)(3)直接合并同类项即可;(2)(4)先去括号,再合并同类项即可.【解答】解:(1)原式=4a;(2)原式=3a﹣2﹣3a+15=13;(3)原式=(3﹣3+1)x2﹣(1﹣1)y2+(5﹣5)y-11-\n=x2;(4)原式=4a2b﹣5ab2﹣3a2b+4ab2=a2b﹣ab2.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.四、先化简下式,再求值.(每小题6分,共12分)18.化简求值:3a2b﹣[2ab2﹣2(﹣a2b+4ab2)]﹣5ab2,其中a=﹣2,b=.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=3a2b﹣2ab2﹣2a2b+8ab2﹣5ab2=a2b+ab2,当a=﹣2,b=时,原式=2﹣=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x)+3(x2y2+y),其中x=﹣1,y=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x+3x2y2+3y=2x2﹣2y2﹣3x+3y,当x=﹣1,y=2时,原式=2﹣8+3+6=3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解答题:(每小题分,共20分)20.已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.【考点】整式的加减.【专题】计算题.-11-\n【分析】将A和B的式子代入可得B﹣2A=3﹣2x2﹣2(2x2﹣1),去括号合并可得出答案.【解答】解:由题意得:B﹣2A=3﹣2x2﹣2(2x2﹣1),=3﹣2x2﹣4x2+2=﹣6x2+5.【点评】本题考查整式的加减运算,比较简单,注意在计算时要细心.21.计算某个整式减去多项式ab﹣2bc+3a+bc+8ac时,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab+bc+8ac.请你求出原题的正确答案.【考点】整式的加减.【分析】设该整式为A,求出A的表达式,进而可得出结论.【解答】解:∵A+(ab﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac,∴A=(﹣2ab+bc+8ac)﹣(ab﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac﹣ab+2bc﹣3a﹣bc﹣8ac=﹣3ab+2bc﹣3a,∴A﹣(ab﹣2bc+3a+bc+8ac)=(﹣3ab+2bc﹣3a)﹣(ab﹣2bc+3a+bc+8ac)=﹣3ab+2bc﹣3a﹣ab+2bc﹣3a﹣bc﹣8ac=﹣4ab+3bc﹣6a﹣8ac.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.-11-