当前位置: 首页 > 初中 > 数学 > 2022八年级数学上册第十五章分式测试卷2(新人教版)

2022八年级数学上册第十五章分式测试卷2(新人教版)

doc 2022-08-01 09:00:02 18页
剩余16页未读,查看更多需下载
第15章分式一、选择题1.分式方程的解为(  )A.x=1B.x=2C.x=3D.x=42.关于x的方程=1的解是(  )A.x=4B.x=3C.x=2D.x=13.分式方程=的根为(  )A.x1=2,x2=﹣1B.x=﹣1C.x=2D.x1=2,x2=14.方程﹣=0解是(  )A.x=B.x=C.x=D.x=﹣15.将分式方程=去分母后得到的整式方程,正确的是(  )A.x﹣2=2xB.x2﹣2x=2xC.x﹣2=xD.x=2x﹣46.分式方程﹣1=的解是(  )A.x=1B.x=﹣1+C.x=2D.无解7.分式方程=的解是(  )A.x=1B.x=﹣1C.x=3D.x=﹣38.分式方程的解为(  )A.x=﹣B.x=C.x=D.9.分式方程=的解是(  )A.x=﹣1B.x=1C.x=2D.无解10.将分式方程1﹣=去分母,得到正确的整式方程是(  )A.1﹣2x=3B.x﹣1﹣2x=3C.1+2x=3D.x﹣1+2x=311.分式方程的解为(  )A.1B.2C.3D.418\n 二、填空题12.分式方程的解是  .13.方程的解是  .14.分式方程=0的解是  .15.方程的解是  .16.分式方程=1的解是  .17.方程=3的解是x=  .18.方程﹣=1的解是  .19.分式方程﹣=1的解是  .20.方程=的根x=  .21.方程﹣=0的解为x=  .22.分式方程=的解为  .23.方程的解为  . 三、解答题24.解方程:=.25.(1)解方程:﹣=0;(2)解不等式:2+≤x,并将它的解集在数轴上表示出来.26.解分式方程:=.18\n27.解分式方程:+=﹣1.28.(1)解方程:=;(2)解不等式组:.29.解分式方程:=.30.解分式方程:=﹣. 18\n参考答案与试题解析一、选择题1.分式方程的解为(  )A.x=1B.x=2C.x=3D.x=4【考点】解分式方程.【分析】首先分式两边同时乘以最简公分母2x(x﹣1)去分母,再移项合并同类项即可得到x的值,然后要检验.【解答】解:,去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解,故原方程的解为:X=3,故选:C.【点评】此题主要考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验,这是同学们最容易出错的地方. 2.关于x的方程=1的解是(  )A.x=4B.x=3C.x=2D.x=1【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解.故选:B【点评】18\n此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 3.分式方程=的根为(  )A.x1=2,x2=﹣1B.x=﹣1C.x=2D.x1=2,x2=1【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1=﹣x,解得:x=﹣1,经检验x=﹣1是分式方程的解,故选B【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 4.方程﹣=0解是(  )A.x=B.x=C.x=D.x=﹣1【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x+3﹣7x=0,解得:x=,经检验x=是分式方程的解.故选:B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 18\n5.将分式方程=去分母后得到的整式方程,正确的是(  )A.x﹣2=2xB.x2﹣2x=2xC.x﹣2=xD.x=2x﹣4【考点】解分式方程.【专题】常规题型.【分析】分式方程两边乘以最简公分母x(x﹣2)即可得到结果.【解答】解:去分母得:x﹣2=2x,故选:A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 6.分式方程﹣1=的解是(  )A.x=1B.x=﹣1+C.x=2D.无解【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,去括号得:x2+2x﹣x2﹣x+2﹣3=0,解得:x=1,经检验x=1是增根,分式方程无解.故选D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 7.分式方程=的解是(  )A.x=1B.x=﹣1C.x=3D.x=﹣3【考点】解分式方程.【专题】计算题.【分析】18\n分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x=3x+3,解得:x=3,经检验x=3是分式方程的解.故选:C【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 8.分式方程的解为(  )A.x=﹣B.x=C.x=D.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=2,解得:x=,经检验x=是分式方程的解.故选:B【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 9.分式方程=的解是(  )A.x=﹣1B.x=1C.x=2D.无解【考点】解分式方程.【专题】转化思想.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.18\n【解答】解:去分母得:x+1=3,解得:x=2,经检验x=2是分式方程的解.故选:C【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 10.将分式方程1﹣=去分母,得到正确的整式方程是(  )A.1﹣2x=3B.x﹣1﹣2x=3C.1+2x=3D.x﹣1+2x=3【考点】解分式方程.【专题】计算题.【分析】分式方程两边乘以最简公分母x﹣1,即可得到结果.【解答】解:分式方程去分母得:x﹣1﹣2x=3,故选:B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 11.分式方程的解为(  )A.1B.2C.3D.4【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=3x+6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.故选:C.【点评】18\n此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 二、填空题12.分式方程的解是 x=3 .【考点】解分式方程.【分析】首先方程两边乘以最简公分母x(x﹣1)去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.【解答】解:去分母得:3(x﹣1)=2x,去括号得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母中:x(x﹣1)≠0,∴原分式方程的解为:x=3.故答案为:x=3.【点评】此题主要考查了分式方程的解法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误. 13.方程的解是 x=5 .【考点】解分式方程.【专题】计算题.【分析】在方程两侧同时乘以最简公分母(x+3)(x﹣1)去掉分母转化为整式方程,求出解即可.【解答】解:在方程两侧同时乘以最简公分母(x+3)(x﹣1)去分母得,2x﹣2=x+3,解得x=5,经检验x=5是分式方程的解.故答案为:x=5.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18\n 14.分式方程=0的解是 x=﹣3 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1+2=0,解得:x=﹣3,经检验x=﹣3是分式方程的解.故答案为:x=﹣3.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 15.方程的解是 x=2 .【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是x(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x+2),得2x=x+2,解得x=2.检验:把x=2代入x(x+2)=8≠0.∴原方程的解为:x=2.故答案为:x=2.【点评】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根. 18\n16.分式方程=1的解是 x=2 .【考点】解分式方程.【专题】计算题.【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣1=3,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 17.方程=3的解是x= 6 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 18.方程﹣=1的解是 x=0 .【考点】解分式方程.【专题】计算题.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.18\n【解答】解:去分母得:﹣1﹣3﹣x=x﹣4,移项合并得:2x=0,解得:x=0,经检验x=0是分式方程的解,故答案为:x=0【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 19.分式方程﹣=1的解是 x=﹣1.5 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x+2)﹣1=x2﹣4,整理得:x2+2x﹣1=x2﹣4,移项合并得:2x=﹣3解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解.故答案为:x=﹣1.5.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 20.方程=的根x= ﹣1 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=﹣1,18\n经检验x=﹣1是分式方程的解.故答案为:﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 21.方程﹣=0的解为x= 2 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣3﹣x﹣1=0,解得:x=2,经检验x=2是分式方程的解.故答案为:2【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 22.分式方程=的解为 x=1 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣6=﹣x﹣2,移项合并得:4x=4,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1.【点评】18\n此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 23.方程的解为 x=﹣1 .【考点】解分式方程.【专题】计算题;压轴题.【分析】本题考查解分式方程的能力,观察可得方程最简公分母为:x(x﹣2),去分母,化为整式方程求解.【解答】解:方程两边同乘x(x﹣2),得x﹣2=3x,解得:x=﹣1,经检验x=﹣1是方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根. 三、解答题24.解方程:=.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 25.(1)解方程:﹣=0;(2)解不等式:2+≤x,并将它的解集在数轴上表示出来.18\n【考点】解分式方程;在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)不等式去分母,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)去分母得:3x+6﹣2x=0,移项合并得:x=﹣6,经检验x=﹣6是分式方程的解;(2)去分母得:6+2x﹣1≤3x,解得:x≥5,解集在数轴上表示出来为:【点评】此题考查了解分式方程,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 26.解分式方程:=.【考点】解分式方程.【专题】计算题;转化思想.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验即可得到分式方程的解.【解答】解:去分母得:2a+2=﹣a﹣4,解得:a=﹣2,经检验,a=﹣2是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 18\n27.解分式方程:+=﹣1.【考点】解分式方程.【专题】计算题.【分析】解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:﹣(x+2)2+16=4﹣x2,去括号得:﹣x2﹣4x﹣4+16=4﹣x2,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解. 28.(1)解方程:=;(2)解不等式组:.【考点】解分式方程;解一元一次不等式组.【专题】计算题.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可确定出不等式组的解集.【解答】解:(1)去分母得:6+2x=4﹣x,解得:x=﹣,经检验x=﹣是分式方程的解;(2),由①得:x≥1,由②得:x>﹣3,18\n则不等式组的解集为x≥1.【点评】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 29.解分式方程:=.【考点】解分式方程.【分析】两边同时乘最简公分母:2x(x+1),可把分式方程化为整式方程来解答,把解出的未知数的值代入最简公分母进行检验,得到答案.【解答】解:方程两边同时乘2x(x+1)得,3(x+1)=4x,解得,x=3,把x=3代入2x(x+1)≠0,∴x=3是原方程的解,则原方程的解为x=3.【点评】本题考查的是解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根. 30.解分式方程:=﹣.【考点】解分式方程.【分析】方程两边同时乘以(2x+1)(2x﹣1),即可化成整式方程,解方程求得x的值,然后进行检验,确定方程的解.【解答】解:原方程即=﹣,两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.【点评】本题考查的是解分式方程,18\n(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18

相关推荐