2022年北师大版数学七年级上册期末考试模拟题附答案解析(共4套)
docx
2022-08-02 15:00:02
58页
北师大版数学七年级上册期末考试模拟题(一)(时间:120分钟分值:120分)一、选择题:(本大题10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)1.(4分)有理数a,b在数轴上的表示如图所示,则下列结论中:①ab<0,②ab>0,③a+b<0,④a﹣b<0,⑤a<|b|,⑥﹣a>﹣b,正确的有( )A.2个B.3个C.4个D.5个2.(4分)下列各题中正确的是( )A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7移项、合并同类项得x=53.(4分)在下列调查中,适宜采用普查的是( )A.了解我省中学生的视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率4.(4分)将全体自然数按下面的方式进行排列:按照这样的排列规律,2019应位于( )A.位B.位C.位D.位5.(4分)的倒数是( )A.B.C.D.6.(4分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( )A.3.12×105B.3.12×106C.31.2×105D.0.312×1077.(4分)如果∠A的补角与∠A的余角互补,那么2∠A是( )A.锐角B.直角C.钝角D.以上三种都可能8.(4分)若与kx﹣1=15的解相同,则k的值为( )A.8B.2C.﹣2D.69.(4分)如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( )A.B.C.D.10.(4分)下列各题中,合并同类项结果正确的是( )A.2a2+3a2=5a2B.2a2+3a2=6a2C.4xy﹣3xy=1D.2m2n﹣2mn2=0 二、填空题:(每小题4分,共24分)11.(4分)单项式﹣πa3bc的次数是 ,系数是 .12.(4分)若有理数a、b满足|a﹣5|+(b+7)2=0,则a+b的值为 .13.(4分)若代数式x﹣y的值为4,则代数式2x﹣3﹣2y的值是 .14.(4分)近似数6.4×105精确到 位.15.(4分)|x﹣1|=1,则x= .16.(4分)已知线段AB=6cm,点C在直线AB上,且CA=4cm,O是AB的中点,则线段OC的长度是 cm. 三、解答题:(共86分)17.(8分)计算:﹣23﹣×[2﹣(﹣3)2].18.(8分)化简(1)3x﹣2x2+5+3x2﹣2x﹣5;(2)2(2a﹣3b)+3(2b﹣3a).19.(8分)如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.20.(8分)解方程:x﹣=﹣.21.(10分)化简求值:3(x2﹣2xy)﹣(2x2﹣xy),其中x=2,y=3.22.(10分)苏宁电器元旦促销,将某品牌彩电按进价提高40%,然后在广告上写“元旦大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电进价是多少元?23.(10分)如图,已知线段AD=6cm,线段AC=BD=4cm,E,F分别是线段AB,CD的中点,求EF的长度.24.(12分)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,求出n的值;(2)请你补全条形统计图;(3)求出乒乓球和羽毛球所对圆心角的度数;(4)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?25.(12分)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON= (直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON= (直接写出结果). 参考答案与试题解析一、选择题:(本大题10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)1.(4分)有理数a,b在数轴上的表示如图所示,则下列结论中:①ab<0,②ab>0,③a+b<0,④a﹣b<0,⑤a<|b|,⑥﹣a>﹣b,正确的有( )A.2个B.3个C.4个D.5个【解答】解:根据数轴上点的位置得:b<0<a,且|a|<|b|,可得ab<0,a+b<0,a﹣b>0,a<|b|,﹣a<﹣b,则正确的有3个,故选:B.2.(4分)下列各题中正确的是( )A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7移项、合并同类项得x=5【解答】解:A、7x=4x﹣3移项,得7x﹣4x=﹣3,故选项错误;B、由=1+去分母,两边同时乘以6得2(2x﹣1)=6+3(x﹣3),选项错误;C、2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故选项错误;D、由2(x+1)=x+7去括号得2x+2=x+7,移项,2x﹣x=7﹣2,合并同类项得x=5,故选项正确.故选:D. 3.(4分)(2017秋•永新县期末)在下列调查中,适宜采用普查的是( )A.了解我省中学生的视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解我省中学生的视力情况,调查范围广,适合抽样调查,故A错误;B、了解九(1)班学生校服的尺码情况适合普查,故B正确;C、检测一批电灯泡的使用寿命,调查具有破坏性,适合抽样调查,故C错误;D、调查台州《600全民新闻》栏目的收视率,调查范围广,适合抽样调查,故D错误;故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(4分)将全体自然数按下面的方式进行排列:按照这样的排列规律,2019应位于( )A.位B.位C.位D.位【解答】解:由图可知,每4个数为一个循环组依次循环,∵2019是第2020个数,∴2020÷4=505,∴2019应位于第505循环组的第1个数,在位.故选:D. 5.(4分)的倒数是( )A.B.C.D.【解答】解:﹣1=﹣,∵(﹣)×(﹣)=1,∴﹣1的倒数是﹣.故选:C. 6.(4分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( )A.3.12×105B.3.12×106C.31.2×105D.0.312×107【解答】解:将3120000用科学记数法表示为:3.12×106.故选:B. 7.(4分)如果∠A的补角与∠A的余角互补,那么2∠A是( )A.锐角B.直角C.钝角D.以上三种都可能【解答】解:由题意得(90°﹣∠A)+(180°﹣∠A)=180°解得2∠A=90°.故选:B. 8.(4分)若与kx﹣1=15的解相同,则k的值为( )A.8B.2C.﹣2D.6【解答】解:先解方程得:x=8;把x=8代入kx﹣1=15得:8k=16,k=2.故选:B. 9.(4分)如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( )A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D. 10.(4分)下列各题中,合并同类项结果正确的是( )A.2a2+3a2=5a2B.2a2+3a2=6a2C.4xy﹣3xy=1D.2m2n﹣2mn2=0【解答】解:A、2a2+3a2=5a2,正确;B、2a2+3a2=5a2,错误;C、4xy﹣3xy=xy,错误;D、原式不能合并,错误,故选:A.二、填空题:(每小题4分,共24分)11.(4分)单项式﹣πa3bc的次数是 5 ,系数是 π .【解答】解:单项式﹣πa3bc的次数是5,系数是.故答案为:5,﹣. 12.(4分)若有理数a、b满足|a﹣5|+(b+7)2=0,则a+b的值为 ﹣2 .【解答】解:∵|a﹣5|+(b+7)2=0,∴a﹣5=0,b+7=0,∴a=5,b=﹣7;因此a+b=5﹣7=﹣2.故答案为:﹣2. 13.(4分)若代数式x﹣y的值为4,则代数式2x﹣3﹣2y的值是 5 .【解答】解:由题意得:x﹣y=4,则原式=2(x﹣y)﹣3=8﹣3=5.故答案为:5 14.(4分)近似数6.4×105精确到 万 位.【解答】解:6.4×105精确到万位.故答案为万. 15.(4分)|x﹣1|=1,则x= 2或0 .【解答】解:∵|x﹣1|=1,∴x﹣1=±1,∴x=2或0,故答案为:2或0. 16.(4分)已知线段AB=6cm,点C在直线AB上,且CA=4cm,O是AB的中点,则线段OC的长度是 1或7 cm.【解答】解:如图1所示,∵线段AB=6cm,O是AB的中点,∴OA=AB=×6cm=3cm,∴OC=CA﹣OA=4cm﹣3cm=1cm.如图2所示,∵线段AB=6cm,O是AB的中点,CA=4cm,∴OA=AB=×6cm=3cm,∴OC=CA+OA=4cm+3cm=7cm故答案为:1或7. 三、解答题:(共86分)17.(8分)计算:﹣23﹣×[2﹣(﹣3)2].【解答】解:﹣23﹣×[2﹣(﹣3)2]=﹣8﹣×(2﹣9)=﹣8﹣×(﹣7)=﹣8﹣(﹣1)=﹣8+1=﹣7. 18.(8分)化简(1)3x﹣2x2+5+3x2﹣2x﹣5;(2)2(2a﹣3b)+3(2b﹣3a).【解答】解:(1)3x﹣2x2+5+3x2﹣2x﹣5[=(3x﹣2x)+(﹣2x2+3x2)+(5﹣5)=x2+x;(2)2(2a﹣3b)+3(2b﹣3a)=4a﹣6b+6b﹣9a=﹣5a. 19.(8分)如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.【解答】解:由题意可得,如右图所示. 20.(8分)解方程:x﹣=﹣.【解答】解:去分母得6x﹣3(x﹣1)=4﹣(x+2),去括号得6x﹣3x+3=4﹣x﹣2移项合并得4x=﹣1,系数化为1得x=﹣. 21.(10分)化简求值:3(x2﹣2xy)﹣(2x2﹣xy),其中x=2,y=3.【解答】解:原式=3x2﹣6xy﹣2x2+xy=x2﹣5xy,当x=2,y=3时,原式=22﹣5×2×3=﹣26. 22.(10分)苏宁电器元旦促销,将某品牌彩电按进价提高40%,然后在广告上写“元旦大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电进价是多少元?【解答】解:设每台彩电进价是x元,依题意得:0.8(1+40%)x﹣x=270,解得:x=2250.答:每台彩电进价是2250元. 23.(10分)如图,已知线段AD=6cm,线段AC=BD=4cm,E,F分别是线段AB,CD的中点,求EF的长度.【解答】解:∵E,F分别是线段AB,CD的中点,∴AB=2EB=2AE,CD=2CF=FD,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.24.(12分)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,求出n的值;(2)请你补全条形统计图;(3)求出乒乓球和羽毛球所对圆心角的度数;(4)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【分析】(1)根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;(2)根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(3)360°乘以对应百分比可得;(4)喜欢跳绳的人数占总人数的20%乘以总人数即可得出结论.【解答】解:(1)本次调查的总人数n=10÷10%=100;(2)羽毛球的人数为100×20%=20人,补全条形图如下:(3)乒乓球所对应圆心角度数为360°×25%=90°,羽毛球所对应圆心角度数为360°×20%=72°;(4)1200×20%=240,答:估计该校有240名学生喜欢跳绳.【点评】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.25.(12分)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON= 35° (直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON= α (直接写出结果).【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=65°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α即∠MON=α.故答案为:α.北师大版数学七年级上册期末考试模拟题(二)(时间:120分钟分值:120分)第一部分选择题一.选择题(每小题3分)1.下列选项中,比小的数是()A.B.C.D.2.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()3.下列各式符合代数式书写规范的是()A.B.C.元D.4.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为()A.元B.元C.元D.元5.下列计算正确的是()A.B.C.D.6.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为( )A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图星期一星期二星期三星期四星期五星期六星期日123456789101112131415161718192021222324252627282930319.如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.12B.18C.16D.2010.若是方程的解,则的值为()A.10B.4C.3D.-311.在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.1015.下列叙述:①最小的正整数是0;②的系数是;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)6.已知和是同类项,则式子的值是.7.在数轴上,与表示数的点的距离是三个单位长度的点表示的数是.8.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.如图所示的运算程序中,若开始输入的值为,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(本题15分)计算:(1)(2)(3)18.(本题4分)先化简,再求值:其中a=.19.(本题8分)解方程(1)(1)(2)20.(本题8分)为了解某校学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《出彩中国人》四个电视节目的喜爱情况,随机抽取了m学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(如图1和图2):根据统计图提供的信息,回答下列问题;(1)m=,n=;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角读书是度.(3)根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校6000名学生中有多少学生最喜欢《中国诗词大会》节目.21.(本题5分):如图,∠AOC=∠BOC=50°,OD平分∠AOB,求∠AOB和∠COD的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为__,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?参考答案北师大版数学七年级上册期末考试模拟题(三)(时间:120分钟分值:120分)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)﹣的相反数是( )A.﹣2B.2C.﹣D.2.(3分)下列运算正确的是( )A.2a+3b=5a+bB.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=03.(3分)已知2x3y2与﹣x3my2的和是单项式,则式子4m﹣24的值是( )A.20B.﹣20C.28D.﹣24.(3分)若2(a+3)的值与4互为相反数,则a的值为( )A.﹣1B.﹣C.﹣5D.5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误( )A.①B.②C.③D.④6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是( )A.3B.4C.5D.67.(3分)下列画图的语句中,正确的为( )A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是( )A.b<﹣a<a<﹣bB.b<a<﹣b<﹣aC.b<﹣b<﹣a<aD.b<a<﹣a<﹣b9.(3分)儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的2倍.( )A.5年后B.9年后C.12年后D.15年后10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为( )A.6cmB.9cmC.3cm或6cmD.1cm或9cm 二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为 .12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b= .13.(3分)如果(a﹣2)xa﹣2+6=0是关于x的一元一次方程,那么a= .14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为 .(用含n的代数式表示)15.(3分)单项式﹣的系数是 ,次数是 .16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b﹣a|= .17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是 .18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是 (填序号). 三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长. 参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)﹣的相反数是( )A.﹣2B.2C.﹣D.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D. 2.(3分)下列运算正确的是( )A.2a+3b=5a+bB.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0【解答】解:A、2a、3b不是同类项,不能合并,此选项错误;B、2a﹣3b=﹣(a﹣b),此选项错误;C、2a2b、﹣2ab2不是同类项,不能合并,此选项错误;D、3ab﹣3ba=0,此选项正确;故选:D 3.(3分)已知2x3y2与﹣x3my2的和是单项式,则式子4m﹣24的值是( )A.20B.﹣20C.28D.﹣2【解答】解:由题意可知:2x3y2与﹣x3my2是同类项,∴3=3m,∴m=1,∴4m﹣24=4﹣24=﹣20,故选(B) 4.(3分)若2(a+3)的值与4互为相反数,则a的值为( )A.﹣1B.﹣C.﹣5D.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C 5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误( )A.①B.②C.③D.④【解答】解:方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x﹣x﹣2x=4+1;③合并同类项,得x=5;④化系数为1,x=5.其中错误的一步是②.故选B. 6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是( )A.3B.4C.5D.6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C. 7.(3分)下列画图的语句中,正确的为( )A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选D. 8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是( )A.b<﹣a<a<﹣bB.b<a<﹣b<﹣aC.b<﹣b<﹣a<aD.b<a<﹣a<﹣b【解答】解:根据图示,可得b<﹣a<a<﹣b.故选:A. 9.(3分)儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的2倍.( )A.5年后B.9年后C.12年后D.15年后【解答】解:设x年后父亲的年龄是儿子的年龄的2倍,根据题意得:39+x=2(12+x),解得:x=15.答:15年后父亲的年龄是儿子的年龄的2倍.故选D. 10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为( )A.6cmB.9cmC.3cm或6cmD.1cm或9cm【解答】解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=BM﹣BN=5﹣4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=MB+BN=5+4=9cm,故选:D. 二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为 150° .【解答】解:设这个角为x°,则它的余角为(90﹣x)°,90﹣x=2x解得:x=30,180°﹣30°=150°,答:这个角的补角为150°,故答案为:150°. 12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b= ﹣1 .【解答】解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1. 13.(3分)如果(a﹣2)xa﹣2+6=0是关于x的一元一次方程,那么a= 3 .【解答】解:∵(a﹣2)xa﹣2+6=0是关于x的一元一次方程,∴a﹣2=1,解得:a=3,故答案为:3. 14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为 2+3n .(用含n的代数式表示)【解答】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n﹣1)=3n+2. 15.(3分)单项式﹣的系数是 ﹣ ,次数是 3 .【解答】解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3. 16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b﹣a|= ﹣b+c+a .【解答】解:由数轴可知:c<b<0<a,∴b<0,c+b<0,b﹣a<0,∴原式=﹣b+(c+b)﹣(b﹣a)=﹣b+c+b﹣b+a=﹣b+c+a,故答案为:﹣b+c+a 17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是 26或5 .【解答】解:∵按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4;∴这个数可能是20+6=26或6﹣1=5. 18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是 ①②④ (填序号).【解答】解:如图,①CE=CD+DE,故①正确;②CE=BC﹣EB,故②正确;③CE=CD+BD﹣BE,故③错误;④∵AE+BC=AB+CE,∴CE=AE+BC﹣AB=AB+CE﹣AB=CE,故④正确;故答案是:①②④. 三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.【解答】解:(1)原式=﹣10+2=﹣8;(2)原式=﹣1+0﹣0.5×(﹣8)=﹣1+4=3. 20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.【解答】解:(1)去括号,得:3x+6﹣1=x﹣3,移项,得:3x﹣x=﹣3﹣6+1,合并同类项,得:2x=﹣8,系数化为1,得:x=﹣4;(2)去分母,得:3(x+1)﹣6=2(2﹣x),去括号,得:3x+3﹣6=4﹣2x,移项,得:3x+2x=4+6﹣3,合并同类项,得:5x=7,系数化为1,得:x=. 21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2)=4x2﹣4y2﹣3x2y2﹣3x2+3x2y2+3y2=x2﹣y2,当x=﹣1,y=2时,原式=(﹣1)2﹣22=﹣3. 22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?【解答】解:设小拖拉机每小时耕地x亩,则大拖拉机每小时耕地(30﹣x)亩,根据题意得:30﹣x=1.5x,解得:x=12.答:小拖拉机每小时耕地12亩. 23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【解答】解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又∵AQ=AP+PQ,∴AP=BQ,∴PQ=AB=4cm;当点Q'在AB的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm.综上所述,PQ=4cm或12cm. 北师大版数学七年级上册期末考试模拟题(四)(时间:120分钟分值:120分)一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.(4分)在π,﹣2,0.3,﹣,0.1010010001这五个数中,有理数的个数有( )A.1个B.2个C.3个D.4个2.(4分)下列说法中,正确的是( )A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大3.(4分)下列说法中,正确的是( )A.2不是单项式B.﹣ab2的系数是﹣1,次数是3C.6πx3的系数是6D.﹣的系数是﹣24.(4分)把方程3x+去分母正确的是( )A.18x+2(2x﹣1)=18﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.3x+2(2x﹣1)=3﹣3(x+1)5.(4分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x人,下列方程正确的是( )A.3x+20=4x﹣25B.3x﹣25=4x+20C.4x﹣3x=25﹣20D.3x﹣20=4x+256.(4分)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为( )A.B.C.D.7.(4分)下列结论:①若关于x的方程ax+b=0(a≠0)的解是x=1,则a+b=0;②若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=﹣;③若a+b=1,且a≠0,则x=1一定是方程ax+b=1的解.其中正确的结论是( )A.①②B.②③C.①③D.①②③8.(4分)按下面的程序计算,当输入x=100时,输出结果为501;当输入x=20时,输出结果为506;如果开始输入的值x为正数,最后输出的结果为656,那么满足条件的x的值最多有( )A.5个B.4个C.3个D.2个9.(4分)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A.0.8x﹣10=90B.0.08x﹣10=90C.90﹣0.8x=10D.x﹣0.8x﹣10=9010.(4分)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A.2a﹣3bB.4a﹣8bC.2a﹣4bD.4a﹣10b 二、填空题:(本大题共4小题,每小题5分,共20分)11.(5分)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 .12.(5分)为了倡导绿色出行,某市为市民提供了自行车租赁服务,其收费标准如下:地区类别首小时内首小时外备注A类1.5元/15分钟2.75元/15分钟不足15分钟时按15分钟收费B类1.0元/15分钟1.25元/15分钟C类免费0.75元/15分钟如果小明某次租赁自行车3小时,缴费14元,请判断小明该次租赁自行车所在地区的类别是 类(填“A、B、C”中的一个).13.(5分)刘谦的魔术表演风靡全世界,很多同学非常感兴趣,也学起了魔术.小华把任意有理数对(x,y)放进装有计算装置的魔术盒,会得到一个新的有理数x+y2+1.例如:把(﹣1,2)放入其中,就会得到﹣1+22+1=4.现将有理数对(3,﹣2)放入其中,得到的有理数是 .若将正整数对放入其中,得到的值是6,则满足条件的所有的正整数对(x,y)为 .14.(5分)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元. 三、解答题(本大题共两题,每题8分,共16分)15.(8分)﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].16.(8分)解方程:. 四、(本大题共两题,每题8分,共16分)17.(8分)如图,点C是线段AB上,AC=10cm,CB=8cm,M,N分别是AC,BC的中点.(1)求线段MN的长.(2)若C为线段AB上任一点,满足AC+CB=acm,其他条件不变,不用计算你猜出MN的长度吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N仍分别为AC,BC的中点,你还能猜出线段MN的长度吗?(4)由此题你发现了怎样的规律?18.(8分)先化简,再求值:已知x2﹣(2x2﹣4y)+2(x2﹣y),其中x=﹣1,y=. 五、(本大题共两题,每题10分,共20分)19.(10分)一次数学课上,老师要求学生根据图示张鑫与李亮的对话内容,展开如下活动:活动1:仔细阅读对话内容活动2:根据对话内容,提出一些数学问题,并解答.下面是学生提出的两个问题,请你列方程解答.(1)如果张鑫没有办卡,她需要付多少钱?(2)你认为买多少元钱的书办卡就便宜?20.(10分)一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值. 六、(本题12分)21.(12分)如图所示,是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数123456n火柴棒根数471013(2)某同学用若干根火柴棒按如上图列的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n个图案时剩下了20根火柴棒,要刚好摆完第n+1个图案还差2根.问最后摆的图案是第几个图案? 七、(本题12分)22.(12分)为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为 元. 八、(本题14分)23.(14分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由. 参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.(4分)在π,﹣2,0.3,﹣,0.1010010001这五个数中,有理数的个数有( )A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据有理数的定义求解.【解答】解:在π,﹣2,0.3,﹣,0.1010010001这五个数中,有理数的个数为﹣2,0.3,﹣,0.1010010001.故选D.【点评】本题考查了有理数:整数和分数统称为有理数. 2.(4分)下列说法中,正确的是( )A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大【考点】绝对值;两点间的距离;角的概念.【分析】根据绝对值、线段的中点和角的定义判断即可.【解答】解:A、绝对值等于它本身的数是非负数,错误;B、何有理数的绝对值都不是负数,正确;C、线段AC=BC,则线段上的点C是线段AB的中点,错误;D、角的大小与角两边的长度无关,错误;故选B.【点评】此题考查绝对值、线段的中点和角的定义问题,关键是根据定义判断. 3.(4分)下列说法中,正确的是( )A.2不是单项式B.﹣ab2的系数是﹣1,次数是3C.6πx3的系数是6D.﹣的系数是﹣2【考点】单项式.【分析】直接利用单项式的次数与系数的概念分别判断得出即可.【解答】解:A、2是单项式,故此选项错误;B、﹣ab2的系数是﹣1,次数是3,正确;C、6πx3的系数是6π,故此选项错误;D、﹣的系数是﹣,故此选项错误;故选:B.【点评】此题主要考查了单项式,正确把握相关概念是解题关键. 4.(4分)把方程3x+去分母正确的是( )A.18x+2(2x﹣1)=18﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.3x+2(2x﹣1)=3﹣3(x+1)【考点】解一元一次方程.【分析】同时乘以各分母的最小公倍数,去除分母可得出答案.【解答】解:去分母得:18x+2(2x﹣1)=18﹣3(x+1).故选:A.【点评】本题考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项和系数化为1,在去分母时一定要注意:不要漏乘方程的每一项. 5.(4分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x人,下列方程正确的是( )A.3x+20=4x﹣25B.3x﹣25=4x+20C.4x﹣3x=25﹣20D.3x﹣20=4x+25【考点】由实际问题抽象出一元一次方程.【分析】设这个班有学生x人,等量关系为图书的数量是定值,据此列方程.【解答】解:设这个班有学生x人,由题意得,3x+20=4x﹣25.故选A.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程. 6.(4分)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为( )A.B.C.D.【考点】几何体的展开图;截一个几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选:B.【点评】考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置. 7.(4分)下列结论:①若关于x的方程ax+b=0(a≠0)的解是x=1,则a+b=0;②若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=﹣;③若a+b=1,且a≠0,则x=1一定是方程ax+b=1的解.其中正确的结论是( )A.①②B.②③C.①③D.①②③【考点】一元一次方程的解.【分析】根据方程的解的定义即可判断.【解答】解:①把x=1代入方程得a+b=0,故结论正确;②方程ax+b=0(a≠0)移项,得ax=﹣b,两边同时除以a得x=﹣,∵b=2a,∴=2,∴x=﹣2,故命题错误;③把x=1代入方程ax+b=1一定有a+b=1成立,则x=1是方程的解.故选C.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键. 8.(4分)按下面的程序计算,当输入x=100时,输出结果为501;当输入x=20时,输出结果为506;如果开始输入的值x为正数,最后输出的结果为656,那么满足条件的x的值最多有( )A.5个B.4个C.3个D.2个【考点】代数式求值;解一元一次方程.【专题】图表型;规律型;方程思想;一次方程(组)及应用.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【解答】解:∵最后输出的结果为656,∴第一个数就是直接输出其结果时:5x+1=656,则x=131>0,第二个数就是直接输出其结果时:5x+1=131,则x=26>0,第三个数就是直接输出其结果时:5x+1=26,则x=5>0,第四个数就是直接输出其结果时:5x+1=5,则x=0.8>0,第五个数就是直接输出其结果时:5x+1=0.8,则x=﹣0.4<0,故x的值可取131、26、5、0.8四个.故答案为:B.【点评】本题主要考查代数式的求值和解方程的能力,注意理解题意与逆向思维的应用是解题的关键. 9.(4分)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A.0.8x﹣10=90B.0.08x﹣10=90C.90﹣0.8x=10D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价. 10.(4分)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A.2a﹣3bB.4a﹣8bC.2a﹣4bD.4a﹣10b【考点】整式的加减;列代数式.【专题】几何图形问题.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选B【点评】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键. 二、填空题:(本大题共4小题,每小题5分,共20分)11.(5分)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 4.51×107 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于45100000有8位,所以可以确定n=8﹣1=7.【解答】解:45100000这个数用科学记数法表示为4.51×107.故答案为:4.51×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键. 12.(5分)为了倡导绿色出行,某市为市民提供了自行车租赁服务,其收费标准如下:地区类别首小时内首小时外备注A类1.5元/15分钟2.75元/15分钟不足15分钟时按15分钟收费B类1.0元/15分钟1.25元/15分钟C类免费0.75元/15分钟如果小明某次租赁自行车3小时,缴费14元,请判断小明该次租赁自行车所在地区的类别是 B 类(填“A、B、C”中的一个).【考点】一元一次方程的应用.【分析】根据自行车租赁服务的收费标准,分别求出三个类别租赁自行车的收费,进而求解即可.【解答】解:如果租赁自行车所在地区的类别是A类,应该收费:1.5×4+2.75×8=28(元),如果停车所在地区的类别是B类,应该收费:1.0×4+1.25×8=14(元),如果停车所在地区的类别是C类,应该收费:0×4+0.75×8=6(元),故答案为:B.【点评】本题考查了实际问题的应用,正确理解自行车租赁服务的收费标准,求出三个类别租赁自行车的收费是解题的关键. 13.(5分)刘谦的魔术表演风靡全世界,很多同学非常感兴趣,也学起了魔术.小华把任意有理数对(x,y)放进装有计算装置的魔术盒,会得到一个新的有理数x+y2+1.例如:把(﹣1,2)放入其中,就会得到﹣1+22+1=4.现将有理数对(3,﹣2)放入其中,得到的有理数是 8 .若将正整数对放入其中,得到的值是6,则满足条件的所有的正整数对(x,y)为 (1,2)或(4,1) .【考点】有理数的混合运算.【专题】新定义;实数.【分析】把有理数(3,﹣2)放入其中,计算即可得到结果;根据结果为6列出方程,由x与y为正整数确定出(x,y)即可.【解答】解:根据题意得:3+(﹣2)2+1=3+4+1=8;根据题意得:x+y2+1=6,当x=1时,y=2;x=4时,y=1,则(x,y)为(1,2)或(4,1),故答案为:8;(1,2)或(4,1)【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 14.(5分)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 248或296 元.【考点】一元一次方程的应用.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.【点评】本题考查了一元一次方程的应用,解题的关键是分段考虑,结合熟练关系找出每段x区间内的关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键. 三、解答题(本大题共两题,每题8分,共16分)15.(8分)﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1﹣×(2﹣9)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.(8分)解方程:.【考点】解一元一次方程.【专题】计算题.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.【解答】解:去分母得,2(x+1)﹣4=8+2﹣x,去括号得,2x+2﹣4=8+2﹣x,移项得,2x+x=8+2﹣2+4,合并同类项得,3x=12,系数化为1得,x=4.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号. 四、(本大题共两题,每题8分,共16分)17.(8分)如图,点C是线段AB上,AC=10cm,CB=8cm,M,N分别是AC,BC的中点.(1)求线段MN的长.(2)若C为线段AB上任一点,满足AC+CB=acm,其他条件不变,不用计算你猜出MN的长度吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N仍分别为AC,BC的中点,你还能猜出线段MN的长度吗?(4)由此题你发现了怎样的规律?【考点】两点间的距离.【分析】(1)根据M,N分别是AC,BC的中点,找到线段之间的关系,即可求出结果;(2)根据M,N分别是AC,BC的中点,找到线段之间的关系,即可得出结论;(3)根据M,N分别是AC,BC的中点,找到线段之间的关系,即可得出结论;(4)分析上面结论,即可得出“MN的长度与C点的位置无关,只与AB的长度有关”这一结论.【解答】解:(1)MN=MC+CN=AC+CB=×10+×8=5+4=9cm.答:线段MN的长为9cm.(2)MN=MC+CN=AC+CB=(AC+CB)=cm.(3)如图,MN=AC﹣AM﹣NC=AC﹣AC﹣BC=(AC﹣BC)=cm.(4)当C点在AB线段上时,AC+BC=AB,当C点在AB延长线上时,AC﹣BC=AB,故找到规律,MN的长度与C点的位置无关,只与AB的长度有关.【点评】本题考查了两点间的距离,解题的关键是根据M,N分别是AC,BC的中点,找到线段之间的关系. 18.(8分)先化简,再求值:已知x2﹣(2x2﹣4y)+2(x2﹣y),其中x=﹣1,y=.【考点】整式的加减—化简求值.【专题】计算题.【分析】先去括号得到原式=x2﹣2x2+4y+2x2﹣2y,再合并同类项得x2+2y,然后把x=﹣1,y=代入计算.【解答】解:原式=x2﹣2x2+4y+2x2﹣2y=x2+2y,当x=﹣1,y=时,原式=(﹣1)2+2×=2.【点评】本题考查了整式的加减﹣化简求值:先去括号,再合并同类项,然后把满足条件的字母的值代入计算得到对应的整式的值. 五、(本大题共两题,每题10分,共20分)19.(10分)一次数学课上,老师要求学生根据图示张鑫与李亮的对话内容,展开如下活动:活动1:仔细阅读对话内容活动2:根据对话内容,提出一些数学问题,并解答.下面是学生提出的两个问题,请你列方程解答.(1)如果张鑫没有办卡,她需要付多少钱?(2)你认为买多少元钱的书办卡就便宜?【考点】一元一次方程的应用.【分析】(1)设如果张鑫没有办卡,她需要付x元,根据关系式为:书的原价﹣12=书的原价×0.8+20列出一元一次方程即可;(2)设买y元的书办卡与不办卡的花费一样多,根据题意得到y=20+0.8y,求出y即可.【解答】(1)解:设如果张鑫没有办卡,她需要付x元,则有:20+0.8x=x﹣12,整理方程得:0.2x=32,解得:x=160,答:如果张鑫没有办卡,她需要付160元;(2)解:设买y元的书办卡与不办卡的花费一样多,则有:y=20+0.8y,解得y=100.所以当购买的书的总价多于100元时,办卡便宜,答:我认为买多于100元钱的书办卡就便宜.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 20.(10分)一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.【考点】整式的加减;代数式求值.【专题】计算题;新定义;实数.【分析】(1)利用“相伴数对”的定义化简,计算即可求出b的值;(2)写出一个“相伴数对”即可;(3)利用“相伴数对”定义得到9m+4n=0,原式去括号整理后代入计算即可求出值.【解答】解:(1)∵(1,b)是“相伴数对”,∴+=,解得:b=﹣;(2)(2,﹣)(答案不唯一);(3)由(m,n)是“相伴数对”可得:+=,即=,即9m+4n=0,则原式=m﹣n﹣4m+6n﹣2=﹣n﹣3m﹣2=﹣﹣2=﹣2.【点评】此题考查了整式的加减,以及代数式求值,弄清题中的新定义是解本题的关键. 六、(本题12分)21.(12分)如图所示,是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数123456n火柴棒根数471013(2)某同学用若干根火柴棒按如上图列的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n个图案时剩下了20根火柴棒,要刚好摆完第n+1个图案还差2根.问最后摆的图案是第几个图案?【考点】规律型:图形的变化类.【专题】规律型.【分析】(1)易得组成一个正方形都需要4根火柴棒,找到组成1个以上的正方形需要的火柴棒的根数在4的基础上增加几个3即可.(2)根据(1)的规律得出3(n+1)+1=22,解出n即可.【解答】解:(1)按如图的方式摆放,每增加1个正方形火花图案,火柴棒的根数相应地增加3根,若摆成5个、6个、n个同样大小的正方形火花图案,则相应的火柴棒的根数分别是16根、19根、(3n+1)根.正方形个数123456n火柴棒根数47101316193n+1(2)∵当他摆完第n个图案时剩下了20根火柴棒,要刚好摆完第n+1个图案还差2根.∴3(n+1)+1=22,解得n=6,∴这位同学最后摆的图案是第7个图案.【点评】本题考查图形的规律性问题;得到不变的量及变化的量与n的关系是解决本题的关键. 七、(本题12分)22.(12分)为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为 2或8 元.【考点】一元一次方程的应用.【专题】应用题.【分析】(1)设钢笔得单价为x元,则毛笔单价为(x+4)元,根据题意列出方程,求出方程的解即可得到结果;(2)①设单价为19元得钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意列出方程,求出方程的解即可得到结果;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意列出关系式,根据z,a为整数,确定出a与z的值,即可得到结果.【解答】解:(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元,由题意得:30x+20(x+6)=1070,解得:x=19,则x+6=25,答:钢笔的单价为19元,毛笔的单价为25元;(2)①设单价为19元的钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意得:19y+25(60﹣y)=1322,解得:y=,不合题意,即张老师肯定搞错了;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意得:19z+25(60﹣z)=1322﹣a,即6z=178+a,由a,z都是整数,且178+a应被6整除,经验算当a=2时,6z=180,即z=30,符合题意;当a=8时,6z=186,即z=31,符合题意,则签字笔的单价为2元或8元.故答案为:2或8.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键. 八、(本题14分)23.(14分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【考点】角的计算;角平分线的定义.【分析】(1)根据图形和题意得出∠AON+∠BOM=90°,∠CON+∠COM=90°,再根据∠AON=∠CON,即可得出OM平分∠BOC;(2)根据图形和题意得出∠AON+∠BOM=90°,∠CON=∠COM=45°,再根据转动速度从而得出答案;(3)分别根据转动速度关系和OC平分∠MOB画图即可.【解答】解:(1)①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC;(2)5秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒;(3)OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)=(90°﹣3t),解得:t=秒;如图:【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.