2022年人教版八年级数学上册导学案:第2课时 等腰三角形的判定
doc
2022-08-02 18:38:59
6页
13.3.1等腰三角形第2课时等腰三角形的判定一、新课导入1.导入课题:我们知道如果一个三角形有两条边相等,那么它们所对的角相等,反过来如果一个三角形有两个角相等,那么它们所对的边是否也相等呢?这节课我们带着这个问题研究等腰三角形的判定方法.2.学习目标:(1)会阐述、推证等腰三角形的判定定理.(2)会运用判定定理解决证明线段相等的问题.3.学习重、难点:重点:等腰三角形判定定理的灵活运用.难点:探求等腰三角形的判定定理的证明.二、分层学习1.自学指导:(1)自学内容:探究等腰三角形的判定方法.(2)自学时间:5分钟.(3)自学方法:经历“操作——猜想——归纳——结论”过程,分清等腰三角形的判定定理的题设与结论.(4)探究提纲:①按等腰三角形的定义,有两边相等的三角形是等腰三角形.②如图,在△ABC中,∠B=∠C,那么AB与AC相等吗?若相等,又该如何证明呢?,a.猜想:AB=AC.b.要证明两条线段相等,按以往的经验是采用什么方法?证三角形全等.c.要采用这些方法,图中具备采用这种方法的条件吗?若不具备,应怎么办?不具备,作辅助线构造全等三角形.d.根据思路,并写出你的证明.证明:作AD⊥BC于点D,则∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS).∴AB=AC.e.将你上述探究的结论用文字表述出来:等角对等边.2.自学:学生结合探究提纲进行自主探究.3.助学:(1)师助生:①明了学情:了解学生对自己的猜想是否正确,证明线段相等的思路是否合理,结论表述是否清晰、准确.②差异指导:引导学生回忆证明等量的常用方法是证明三角形全等,如何构造全等三角形进行点拨引导.(2)生助生:学生间相互交流帮助,寻求解决问题的思路.4.强化:(1)交流学习成果:由学生代表回答自己是如何找出解决问题的探究方法的.,(2)总结:等腰三角形的判定方法:“等角对等边”.1.自学指导:(1)自学内容:教材第78页例2、例3.(2)自学时间:10分钟.(3)自学方法:边看边思考例2中命题证明的步骤及例3中每一步作图的依据,并动手尝试.(4)自学参考提纲:①例2中的题设和结论是用文字表述的,它是一个命题,从证明的全过程来看,证明命题的步骤有a.已知;b.求证;c.证明.②填上例2证明中每步后面的理由.两直线平行,同位角相等;两直线平行,内错角相等;等角对等边.③阅读例3,思考作法(2)为什么要作AB的垂直平分线?它依据了线段垂直平分线的什么性质?可以在上面截取DC=h,依据线段垂直平分线上的点到这条线段两个端点的距离相等.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:例2、例3是等腰三角形判定的直接应用,例2的求证步骤学生难于把握,但学生对例3这种类型的题目,一般的学生不知道怎样找腰,并不能很好地写出完整的作法.②差异指导:引导学生学会命题证明题的步骤,引导学生思考例3中如何找到这个等腰三角形的腰(确定相等的两条边).(2)生助生:学生间相互交流帮助.,4.强化:练习:教材第79页3、4题练习3:已知:△ABC,D为AC的中点,BD=12AC.求证:∠ABC=90°.证明:∵D为AC的中点,BD=12AC.∴AD=BD=DC,∴∠A=∠ABD,∠C=∠DBC.又∵∠A+∠ABC+∠C=∠A+∠ABD+∠C+∠DBC=2(∠ABD+∠DBC)=2∠ABC=180.∴∠ABC=90°,∴△ABC是直角三角形.练习4:∵OA=OB,∴∠A=∠B,又∵AB∥DC,∴∠C=∠A=∠D=∠B,∴OC=OD.三、评价1.学生的自我评价(围绕三维目标):学生交谈自己的学习收获和学习中的困惑之处.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法、成果和不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):利用等腰三角形的性质定理与判定定理的互逆关系来学习等腰三角形的判定是很重要、很常见的研究问题的方法,本节之前线段垂直平分线的知识的学习及以后学习平行四边形等特殊四边形的知识时会反复用到这种方法.,一、基础巩固(每题10分,共50分)1.如图,∠A=36°,∠C=72°,∠DBC=36°,则图中等腰三角形有(A)个A.3B.2C.1D.02.如图所示,已知OC平分∠AOB,CD∥OB.若OD=3,则CD等于(A)A.3cmB.4cmC.1.5cmD.2cm3.一个三角形不同顶点的三个外角的度数比是3∶3∶2,则这个三角形是等腰三角形.4.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O的平行线交AB于M,交AC于N.若AB=5,AC=7,BC=8,则△AMN的周长为12.第4题图第5题图5.如图所示,在△ABC中,已知AB=AC,要使AD=AE,需要添加的一个条件是BE=CD.(答案不唯一),二、综合应用(20分)6.已知:CE、CF分别平分∠ACB和它的外角∠ACM,EF∥BC,EF交AC于点D,E是CE与AB的交点.求证:DE=DF.证明:∵CF平分∠ACM,∴∠ACF=∠MCF.∵CE平分∠ACB,∴∠ACE=∠BCE.∵EF∥BC,∴∠F=∠MCF=∠ACF,∠FEC=∠BCE=∠ACE,∴DF=DC,DE=DC,∴DE=DF.三、拓展延伸(30分)7.(1)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图中还有等腰三角形吗?解:(1)△ABC,△ADE,△BDF,△CEF,△BCF都是等腰三角形.(2)有△BDF和△CEF是等腰三角形.∵BF平分∠ABC,CF平分∠ACB,∴∠ABF=∠CBF,∠ACF=∠BCF.又DE∥BC,∴∠DFB=∠CBF=∠ABF,∠EFC=∠BCF=∠ACF,∴DF=DB,EF=EC.∴△BDF和△CEF是等腰三角形.