2022年人教版八年级数学上册导学案:14.1.2 幂的乘方
doc
2022-08-02 18:44:40
5页
14.1.2幂的乘方一、新课导入1.导入课题:通过上节的学习,大家知道a2·a3怎么运算,对于(a2)3该怎样运算呢?它表示什么意义呢?今天我们学习幂的乘方运算.2.学习目标:(1)知道幂的乘方的法则.(2)能熟练地运用幂的乘方的法则进行化简和计算.3.学习重、难点:重点:幂的乘方法则及应用.难点:幂的乘方法则的推导及应用.二、分层学习1.自学指导:(1)自学内容:探究幂的乘方的运算法则.(2)自学时间:5分钟.(3)自学方法:分析探究提纲中算式的意义,注意比较算式与结果的指数规律.(4)探究提纲:①根据乘方的意义及同底数幂的乘法填空,观察计算结果,你能发现什么规律?(1)(32)3=32×32×32=3(6)(2)(a2)3=a2×a2×a2=a(6)(3)(am)3=am×am×am=a(3m)(m为正整数)②将上述运算规律推广到一般可得到:(am)n=am……am(n)个am=a(mn)(m、n为正整数),③根据②填空:幂的乘方,底数不变,指数相乘.即(am)n=amn(m、n都是正整数).2.自学:学生结合探究提纲进行自主探究.3.助学:(1)师助生:①明了学情:了解不同层次的学生对幂的乘方的意义及法则推导过程的理解情况.②差异指导:引导不同层次的学生理解(am)n的意义及运算结果的规律总结.(2)生助生:相互交流帮助解决疑难问题.4.强化:(1)幂的乘方法则.(2)计算:①(103)5=1015;②(b3)4=b12;③(xn)3=x3n;④-(x7)7=-x49.(3)填空:①(32)3=(33)(2)②(am)n=(an)(m)1.自学指导:(1)自学内容:教材第96页例2.(2)自学时间:5分钟.(3)自学方法:认真研读课本中的例题是如何运用法则的.(4)自学参考提纲:①请写出幂的乘方的意义,即(am)n表示n个am相乘.②分清算式中的底数和指数各是什么?③填空:(103)3=109;(-x3)2=x6;(-xm)3=-x3m;(a2)3·a5=a112.自学:学生可结合自学指导进行自学.3.助学:,(1)师助生:①明了学情:了解学生对幂的乘方的法则的运用是否掌握.②差异指导:指导学困生分清底数、指数,并总结运算过程中什么变,什么不变.(2)生助生:学生相互交流帮助解疑难.4.强化:(1)总结:①运用幂的乘方法则进行计算的步骤.②当底数是负数时,注意指数的奇偶数对结果符号的影响.(2)计算:口算:①(x3)3=x9②(x2)3=x6③-(x2)3=-x6④-(-x2)3=x6计算:①(-104)2=108②a·(a2)2=a5③[(-2)4]3=212④(-a2)3·(-a3)2=-a12三、评价1.学生的自我评价(围绕三维目标):各小组学生代表交谈自己的学习收获和学习体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、收效及不足进行点评.(2)纸笔评价:课堂评价检测.,3.教师的自我评价(教学反思):本课时教学可类比同底数幂乘法知识的学习过程,由学生根据乘方的意义推导出法则,并从中识别两个公式的异同点,从本质上理解并认识法则,再利用各种形式的训练加强学生对法则的理解与运用.教学中可渗透对逆向思考方法的强调,让学生形成逆向思考数学问题的习惯,逐步提升打破常规,勇于创新的素质,真正得到数学素养的加深.一、基础巩固(第1、2、3、4、5题每题10分,第6题20分,共70分)1.计算(x3)3的结果(D)A.x5B.x6C.x8D.x92.下列运算正确的是(B)A.a2·a3=a6B.(a3)2=a6C.a5·a5=a25D.(3x)3=3x33.计算:(102)2=10000;(x4)3=x12.4.计算:x5·(x4)4=x21.5.计算:(x-y)2[(y-x)3]3=(y-x)11.6.计算下列各题:(1)(xa)b·(xb)a;(2)(22)3·(23)3;(3)(a2)4·(a5)2;(4)(-53)2·[(-5)4]3.解:(1)x2ab;(2)215;(3)a18;(4)518.二、综合应用(共20分)7.(1)若2x+y=3,则4x·2y=8.(2)已知3m·9m·27m·81m=330,求m的值.,解:3m·32m·33m·34m=330310m=330m=3三、拓展延伸(共10分)8.若2a=3,2b=5,求23a+2b+2的值.解:23a+2b+2=(2a)3·(2b)2·22=27×25×4=2700.