当前位置: 首页 > 初中 > 数学 > 2022年人教版九年级数学上册导学案:第1课时 弧长和扇形面积

2022年人教版九年级数学上册导学案:第1课时 弧长和扇形面积

doc 2022-08-03 10:16:53 5页
剩余3页未读,查看更多需下载
24.4弧长和扇形面积第1课时弧长和扇形面积一、新课导入1.导入课题:情景:制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线的长度),再下料,这就涉及到计算弧长的问题.问题:怎样求一段弧的长度呢?这就是这节课我们所要研究的问题(板书课题).2.学习目标:(1)能推导弧长和扇形面积的计算公式.(2)知道公式中字母的含义,并能运用这些公式进行相关计算.3.学习重、难点:重点:弧长公式及扇形面积公式与应用.难点:阴影部分面积的计算.二、分层学习1.自学指导:(1)自学内容:教材第111页的内容.(2)自学时间:6分钟.(3)自学要求:注意公式的推导和记忆.(4)自学参考提纲:①圆的周长公式是什么?C=2πR.②弧有长度吗?弧的长度和它所在的圆周长有何关系?圆可以看作是360度的圆心角所对的弧.1°的圆心角所对的弧长是圆周长的几分之几?n°的圆心角所对的弧长是圆周长的几分之几?所以在半径为R的圆中,n°的圆心角所对的弧长l的公式是.③,由弧长公式可知,一条弧的弧长l、圆心角度数n和圆半径R,在这三个量中,已知其中的两个,就可求出第三个.如已知l和n,则R=;已知l和R,则n=.④计算图中弯道的“展直长度”.解:由弧长公式,得的长≈1570(mm).因此所要求的展直长度L=2×700+1×1570=2970(mm).2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学生对弧长公式的推导和变形过程.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:(1)弧长公式、公式的书写格式及其变形.(2)有一段弯道是圆弧形的,道长是12米,弧所对的圆心角是81°,求这段圆弧的半径R(精确到0.1米).解:由得(米).1.自学指导:(1)自学内容:教材第112页到第113页“练习”之前的内容.(2)自学时间:8分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①圆的面积公式是什么?S=πR2②什么叫扇形?扇形的面积和它所在的圆的面积有何关系?圆的面积可以看作是圆心角为360度的扇形面积.圆心角为1°的扇形的面积是圆的面积的几分之几?圆心角为n°的扇形的面积是圆的面积的几分之几?,所以在半径为R的圆中,圆心角为n°的扇形的面积S扇形的公式是.③试推导扇形的面积公式(这里的l指扇形的弧长,R指半径)..④如图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m.求截面上有水部分的面积(精确到0.01m2).a.怎样求圆心角∠AOD的度数?在Rt△ADO中,OD=OC-DC=0.3m,OA=0.6m.∴∠A=30°.∴∠AOD=60°.∴∠AOB=2∠AOD=120°.b.阴影部分的面积=扇形AOB的面积-△AOB的面积.c.写出本题的解答过程.解:如图,连接OA、OB,作弦AB的垂直平分线,垂足为D,交于点C,连接AC.∵OC=0.6m,DC=0.3m,∴OD=OC-DC=0.3(m).∴OD=DC.又AD⊥DC,∴AD是线段OC的垂直平分线.∴AC=AO=OC.从而∠AOD=60°,∠AOB=120°.∴.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生在推导扇形面积公式及求例2中∠AOD时遇到的困难情况.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、研讨.4.强化:(1)扇形面积公式及推导过程和公式的变形.(2)求不规则图形的面积的方法:转化为规则图形的面积和或差.(3)练习:已知正三角形ABC的边长为a,分别以A、B、C为圆心,以12a为半径的圆相切于点D、E、F,求图中阴影部分的面积S.解:连接AD,则AD⊥BC,.,∴.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?掌握了哪些方法?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动参与性、小组交流协作能力和状况、存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课从复习圆周长公式入手,根据圆心角与所对弧长之间的关系,推导出了弧长公式.后又用类比的方法,推出扇形面积,两个公式的推导中,都渗透着由“特殊到一般”,再由“一般到特殊”的辩证思想,然后由学生比较两个公式时,又很容易得出两者之间的关系,明确了知识间的联系.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)已知扇形的圆心角为120°,半径为6,则扇形的弧长是4π.2.(10分)75°的圆心角所对的弧长是2.5πcm,则此弧所在的圆半径是6cm.3.(10分)一个扇形的弧长为20πcm,面积是240πcm2,则扇形的圆心角是150°.4.(20分)如图是一段弯形管道,其中,∠O=∠O′=90°,中心线的两条圆弧半径都为1000mm,求图中管道的展直长度.(π取3.142)解:(mm).答:图中管道的展直长度约为6142mm.5.(20分)草坪上的自动喷水装置能旋转220°,如果它的喷射半径是20m,求它能喷灌的草坪的面积.解:.答:它能喷灌的草坪的面积为.二、综合应用(20分),6.(20分)如图,扇形纸扇完全打开后,外侧两竹条AB、AC夹角为120°,AB的长为30cm,贴纸部分BD的长为20cm,求贴纸部分的面积.解:(cm2),(cm2),∴(cm2).答:贴纸部分的面积是cm2.三、拓展延伸(共10分)7.(10分)正方形的边长为a,以各边为直径在正方形内画半圆,求图中阴影部分的面积.解:方法一:.方法二:.答:图中阴影部分的面积为.

相关推荐