当前位置: 首页 > 初中 > 数学 > 北师大版八年级数学上册期中、期末考试模拟题及答案(各一套)

北师大版八年级数学上册期中、期末考试模拟题及答案(各一套)

docx 2022-08-07 19:00:02 25页
剩余23页未读,查看更多需下载
北师大版八年级数学上册期中考试模拟题(时间:120分钟分值:100分)一、选择题(每小题3分,共18分)(请将正确答案填入下面的表格中)题号123456答案1、下列四个数中,是无理数的是A.B.C.1.732D.2、已知直角三角形的两边长分别为3和4,则此三角形的周长为A.12B.C.12或D.以上都不对3、已知一次函数,若y随x的增大而增大,则该函数图像经过A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限4、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为A.(-1,0)B.(1,0)C.(-2,0)D.(2,0)5、如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为S1、S2、S3,则S1、S2、S3之间的关系是A.B.C.D.6、已知:,,且,则a-b的值为A.2或12B.-2或-12C.2或-12D.-2或12二、填空题(本大题共8小题,每小题3分,共24分)7、的算术平方根是8、在△ABC中,a、b、c分别为三边,给出下列各组条件:①∠A:∠B:∠C=3:4:5;②a:b:c=3:4:5;③a=16,b=63,c=65;④;其中,能判定△ABC是直角三角形的有个.9、已知点A(a,-2)与点B(3,-2)关于y轴对称,则a=10、点A(1,a)在函数y=3x+1的图像上,则a=11、若函数是正比例函数,则m=9、直角坐标系中,在坐标轴上且到点(-3,-4)的距离等于5的点有个.10、若直线y=kx+b平行于直线y=-2x+3,且经过点(5,9),则b=11、如图,等腰三角形ABC的直角边长为1,以它斜边上的高AD为腰,作第一个等腰直角三角形ADE;再以所作的第一个等腰直角三角形ADE的斜边上的高AF为腰,作第二个等腰直角三角形AFG;······,以此推理,这样所作的第n个等腰直角三角形的腰长为三、计算题(第15题每小题4分,第6题4分,共16分)15、(1)(2)(3)16、已知:,,求的值.四、解答题(第17、18题各5分,第19-21题各6分,第22题7分,共35分)17、如图,长方形纸片ABCD中,AB=8cm,把长方形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,AF=cm,求AD.17、某生物小组观察一植物生长,得到植物高度y(单位:厘米)于观察时间x(单位:天)的关系,并画出如图所示的图像(AC是线段,直线CD平行x轴)(1)该植物从观察时起,多少天以后停止生长?(2)求直线AC的解析式,并求该植物最高倡导多少厘米?19、如图,长方体的长BE=20cm,宽AB=10cm,高AD=15cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?20、(1)一只:2a+1的算术平方根是3,3a-b-1的立方根是2,求的值.(2)已知a是的整数部分,b是它的小数部分,求的值.21、已知点A、B都是x轴上的点,若点A的坐标为(4,0),且AB=5,点C的坐标为(2,5)(1)请写出点B的坐标,并画出符合条件的△ABC;(2)求.22、如图,已知直线,与x轴相交于点A,同时经过点B(2,3),另一条直线经过点B,且于x轴相交于点P(m,0).(1)求的解析式;(2)若,求P的坐标.五、拓展题(本大题共1小题,共7分)23、如图,在正方形ABCD纸片上有一点P,PA=1,PD=2,PC=3,现将△PCD剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),求∠APD的度数.参考答案北师大版八年级数学上册期末测试题(时间:120分钟分值:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.方差D.众数2.下列各式计算正确的是()A.B.C.D.3.在△ABC中,∠A=∠B+∠C,∠B=2∠C-6°,则∠C的度数为()A.90°B.58°C.54°D.32°4.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.5.已知直线与的交点的坐标为(1,),则方程组的解是()A.B.C.D.6.下列各数、π、、、0.中,无理数的个数有(  )A.1个B.2个C.3个D.4个7.下面二次根式是最简二次根式的是(  )A.B.C.D.8.下列计算正确的是(  )A.=B.=6C.D.9.下列长度的线段不能构成直角三角形的是(  )A.6,8,10B.5,12,13C.1.5,2,3D.,,310.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是(  )A.甲B.乙C.丙D.丁二、填空题(本大题共6小题,每小题4分,共24分)11.计算:=  .12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为  分.13.实数-8的立方根是__________.14.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于__________°.15.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,求出这两个角的度数?设∠ABD和∠DBC的度数分别为x°,y°,根据题意所列方程组是  .16.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为  .三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:(2﹣)(2+)+(2﹣)2﹣.18.(6分)解方程组:.19.(6分)如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为  点B关于y轴对称的点坐标为  点C关于原点对称的点坐标为  (2)若网格上的每个小正方形的边长为1,则△ABC的面积是  .四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题.第1次第2次第3次第4次第5次甲成绩9040704060乙成绩705070a70甲、乙两人的数学成绩统计表(1)a=  ,=  ;(2)请完成图中表示乙成绩变化情况的折线;(3)S甲2=360,乙成绩的方差是  ,可看出  的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析,  将被选中.21.(7分)已知:如图,∠1+∠D=90°,BE∥FC,且DF⊥BE与点G,并分别与AB、CD交于点F、D.求证:AB∥CD.(完成证明并写出推理依据)证明:∵DF⊥BE(已知),∴∠2+ ∠ =90°(  ),∵∠1+∠D=90°(已知),∴  =  (等量代换),∵BE∥CF(已知),∴∠2=∠C(  ),∴∠1=  (  ),∴AB∥CD(  ).22.(7分)已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.24.(9分)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的是两车距B城的路程S甲(千米)、S乙(千米)与行驶时间t(时)的函数图象的一部分.(1)分别求出S甲、S乙与t的函数关系式(不必写出t的取值范围);(2)求A、B两城之间的距离,及t为何值时两车相遇;(3)当两车相距300千米时,求t的值.25.(9分)如图,一次函数y=-x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.D2.D3.D4.D5.A1.6.B7.D8.A9.C.10.D二、填空题(本大题共6小题,每小题4分,共24分)11.计算:= 30 .【考点】二次根式的乘除法.【分析】系数和被开方数分别相乘,最后化成最简二次根式即可.【解答】解:3×2=6=30,故答案为:30.12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为 88 分.【考点】加权平均数.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.13.-214.8015.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,求出这两个角的度数?设∠ABD和∠DBC的度数分别为x°,y°,根据题意所列方程组是  .【考点】由实际问题抽象出二元一次方程组.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故答案为:.16.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为 2或4 .【考点】一次函数图象上点的坐标特征;等腰直角三角形.【专题】分类讨论.【分析】分为两种情况,画出图形,根据等腰三角形的性质求出即可.【解答】解:∵由,得,∴C(2,2);如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4; 三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:(2﹣)(2+)+(2﹣)2﹣.【考点】二次根式的混合运算.【专题】计算题;实数.【分析】原式利用平方差公式,完全平方公式化简,计算即可得到结果.【解答】解:原式=4﹣5+4﹣4+2﹣=5﹣.18.(6分)解方程组:.【考点】解二元一次方程组.【分析】根据方程组的特点采用相应的方法求解,用加减法较简单.【解答】解:①×2+②,得11x=22,x=2,代入①,得y=﹣1.所以方程组的解为.19.(6分)如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为 (﹣1,﹣3) 点B关于y轴对称的点坐标为 (﹣2,0) 点C关于原点对称的点坐标为 (3,1) (2)若网格上的每个小正方形的边长为1,则△ABC的面积是 9 .【考点】作图-轴对称变换.【分析】(1)直接利用关于坐标轴对称点的性质得出各对应点位置即可;(2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)点A关于x轴对称的点坐标为(﹣1,﹣3);点B关于y轴对称的点坐标为:(﹣2,0);点C关于原点对称的点坐标为:(3,1);故答案为:(﹣1,﹣3),(﹣2,0),(3,1);(2)△ABC的面积是:4×5﹣×2×4﹣×3×3﹣×1×5=9.故答案为:9. 四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题.第1次第2次第3次第4次第5次甲成绩9040704060乙成绩705070a70甲、乙两人的数学成绩统计表(1)a= 40 ,= 60 ;(2)请完成图中表示乙成绩变化情况的折线;(3)S甲2=360,乙成绩的方差是 160 ,可看出 乙 的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析, 乙 将被选中.【考点】方差;折线统计图;算术平均数.【分析】(1)根据题意和平均数的计算公式计算即可;(2)根据求出的a的值,完成图中表示乙成绩变化情况的折线;(3)根据方差的计算公式计算,根据方差的性质进行判断即可.【解答】解:(1)∵他们的5次总成绩相同,∴90+40+70+40+60=70+50+70+a+70,解得a=40,(70+50+70+40+70)=60,故答案为:40;60;(2)如图所示:(3)S2乙=[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160.∵S2乙<S甲2,∴乙的成绩稳定,从平均数和方差的角度分析,乙将被选中,故答案为:160;乙;乙.21.(7分)已知:如图,∠1+∠D=90°,BE∥FC,且DF⊥BE与点G,并分别与AB、CD交于点F、D.求证:AB∥CD.(完成证明并写出推理依据)证明:∵DF⊥BE(已知),∴∠2+ ∠D =90°( 三角形内角和定理 ),∵∠1+∠D=90°(已知),∴ ∠1 = ∠2 (等量代换),∵BE∥CF(已知),∴∠2=∠C( 两直线平行,同位角相等 ),∴∠1= ∠C ( 等量代换 ),∴AB∥CD( 内错角相等,两直线平行 ).【考点】平行线的判定与性质.【分析】根据DF⊥BE利用垂直的定义以及三角形内角和定理即可得出∠2+∠D=90°,利用等量代换即可得出∠1=∠2,再根据平行线的性质可得出∠2=∠C,进而可得出∠1=∠C,利用平行线的判定定理即可得出AB∥CD.【解答】证明:∵DF⊥BE(已知),∴∠2+∠D=90°(三角形内角和定理),∵∠1+∠D=90°(已知),∴∠1=∠2(等量代换),∵BE∥CF(已知),∴∠2=∠C(两直线平行,同位角相等),∴∠1=∠C(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:∠D;三角形内角和定理;∠1;∠2;两直线平行,同位角相等;∠C;等量代换;内错角相等,两直线平行. 22.(7分)已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解得:.答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=,∵a、b都是正整数,∴或或.答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.【考点】平行四边形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)通过证明△ODF与△OBE全等即可求得.(2)由△ADB是等腰直角三角形,得出∠A=45°,因为EF⊥AB,得出∠G=45°,所以△ODG与△DFG都是等腰直角三角形,从而求得DG的长和EF=2,然后等腰直角三角形的性质即可求得.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==DO,∴在等腰RT△ADB中,DB=2DO=2=AD∴AD=2,24.(9分)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的是两车距B城的路程S甲(千米)、S乙(千米)与行驶时间t(时)的函数图象的一部分.(1)分别求出S甲、S乙与t的函数关系式(不必写出t的取值范围);(2)求A、B两城之间的距离,及t为何值时两车相遇;(3)当两车相距300千米时,求t的值.【考点】一次函数的应用.【分析】(1)根据函数图象可以分别求得S甲、S乙与t的函数关系式;(2)将t=0代入S甲=﹣180t+600,即可求得A、B两城之间的距离,然后将(1)中的两个函数相等,即可求得t为何值时两车相遇;(3)根据题意可以列出相应的方程,从而可以求得t的值.【解答】解:(1)设S甲与t的函数关系式是S甲=kt+b,,得,即S甲与t的函数关系式是S甲=﹣180t+600,设S乙与t的函数关系式是S甲=at,则120=a×1,得a=120,即S乙与t的函数关系式是S甲=120t;(2)将t=0代入S甲=﹣180t+600,得S甲=﹣180×0+600,得S甲=600,令﹣180t+600=120t,解得,t=2,即A、B两城之间的距离是600千米,t为2时两车相遇;(3)由题意可得,|﹣180t+600﹣120t|=300,解得,t1=1,t3=3,即当两车相距300千米时,t的值是1或3. 25.(9分)解:(1)∵点P(2,n)在正比例函数y=x图象上,∴n=×2=3,∴点P的坐标为(2,3).∵点P(2,3)在一次函数y=﹣x+m的图象上,∴3=﹣2+m,解得:m=5,∴一次函数解析式为y=﹣x+5.∴m的值为5,n的值为3.……4分(2)当x=0时,y=﹣x+5=5,∴点B的坐标为(0,5),∴S△POB=OB•xP=×5×2=5.……8分(3)存在.∵S△OBC=OB•|xC|=S△POB=5,∴xC=﹣2或xC=2(舍去).当x=﹣2时,y=×(﹣2)=﹣3.∴点C的坐标为(﹣2,﹣3).……12分

相关推荐