当前位置: 首页 > 初中 > 数学 > 2022年北师大版八年级数学上册6.1.1平均数课件

2022年北师大版八年级数学上册6.1.1平均数课件

pptx 2022-08-12 13:00:04 22页
剩余18页未读,查看更多需下载
第1课时平均数北师大版八年级上册第六章数据的分析\n情景导入在篮球比赛中,队员的身高、年龄都是影响球队实力的因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?怎样理解“甲队队员比乙队更年轻”?\n中国男子篮球职业联赛2011~2012赛季冠、亚军球队队员身高、年龄如下:\n上述两支篮球队中,哪支球队队员的身高更高?哪支球队的队员更为年轻?你是怎样判断的?\n在日常生活中,我们常用平均数描述一组数据的集中趋势.一般地,对于n个数x1,x2,…,xn,我们把(x1+x2+…+xn)叫做这n个数的算术平均数,简称平均数,记为\n小明是这样计算北京金隅队队员的平均年龄的:平均年龄=(19×1+22×4+23×2+26×2+27×1+28×2+29×2+35×1)÷(1+4+2+2+1+2+2+1)=25.4(岁)想一想你能说说小明这样做的道理吗?\n例某广告公司欲招聘广告策划人员一名,对A、B、C候选人进行了三项素质测试.他们的各项测试成绩如下表所示:\n(1)如果根据三项测试的平均成绩定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?\n解:(1)A的平均成绩为B的平均成绩为C的平均成绩为因此候选人A将被录用.\n(2)根据题意,三人的测试成绩如下:A的测试成绩为B的测试成绩为C的测试成绩为因此候选人B将被录用.\n结论实际问题中,一组数据里的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”.例如,在例题中4,3,1分别是创新、综合知识、语言三项测试成绩的权.而称为A的三项测试成绩的加权平均数.\n随堂练习1.某次体操比赛,六位评委对某位选手的打分(单位:分)如下:9.5,9.3,9.1,9.5,9.4,9.3.(1)求这六个分数的平均分;(2)如果规定:去掉一个最高分和一个最低分,余下分数的平均值作为这位选手的最后得分,那么该选手的最后得分是多少?\n\n2.某校规定学生的体育成绩由三部分组成:早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述三项成绩依次是:92分,80分,84分,则小颖这学期的体育成绩是多少?\n\n巩固练习1.八年级某个班40名学生中,22名男生的平均身高为1.65米,18名女生的平均身高为1.57米,则这个班学生的平均身高是?\n2.某超市购进了一批不同价格的运动鞋,根据近几年统计的平均数据,运动鞋单价为40元,35元,30元,25元的销售百分率分别为60%,75%,82%,98%.要使超市销售运动鞋收入最大,超市应多购单价为的运动鞋.()A.40元B.5元C.30元D.25元D\n3.某公司欲聘请一名员工,三位应聘者甲、乙、丙原始评分如下表:若按仪表、工作经验、电脑操作、社交能力、工作效率五项评分分别占10%,15%,20%,25%,30%综合得分,谁的最高?\n丙的分数最高\n课后作业布置作业:习题6.1第1、2题。完成练习册中本课时的习题。\n\n

相关推荐