当前位置: 首页 > 初中 > 数学 > 华东师大版初中八年级数学上册教案:12.2.3多项式与多项式相乘

华东师大版初中八年级数学上册教案:12.2.3多项式与多项式相乘

doc 2022-08-15 13:00:03 3页
剩余1页未读,查看更多需下载
3.多项式与多项式相乘【基本目标】1.能说出多项式与多项式相乘的法则,并且知道多项式乘以多项式的结果仍然是多项式.会进行多项式乘以多项式的计算及混合运算.2.培养学生灵活运用所学知识分析问题、解决问题的能力.3.培养独立思考、主动探索的习惯和初步解决问题的愿望及能力.【教学重点】掌握多项式乘以多项式的法则.【教学难点】运用法则进行混合运算时,不要漏项.一、复习旧知,导入新课指名学生说出单项式与多项式相乘的法则.(单项式乘以多项式就是用单项式乘以多项式中的每一项,再把所得的的积相加.)式子p(a+b)=pa+pb中的p,可以是单项式,也可以是多项式.如果p=m+n,那么p(a+b)就成了(m+n)(a+b),这就是今天我们所要讲的多项式与多项式相乘的问题.(由此引出课题)你会计算这个式子吗?你是怎样计算的?二、师生互动,探究新知【教师活动】(教师引导学生由繁化简,把(m+n)看作一个整体,使之转化为单项式乘以多项式,即:[(m+n)(a+b)]=(m+n)a+(m+n)b=ma+mb+na+nb.【教师活动】教材P28例图你会验证吗?【教师活动】问题:(1)如何表示扩大后的林区的面积?(2)用不同的方法表示出来后的等式为什么是相等的呢?【学生活动】学生分组讨论,相互交流得出答案.\n【教师活动】观察这一结果的每一项与原来两个多项式各项之间的关系,能不能由原来的多项式各项之间相乘直接得到?如果能得到,又是怎样相乘得到的?(教师示范)1.你能用语言叙述这个式子吗?多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.即:(m+n)(a+b)=ma+mb+na+nb.2.两个多项式相乘,不先计算能知道结果中(合并同类项前)有几项吗?3.在计算中怎样才能不重不漏?这个法则,对于三个或三个以上的多项式相乘,是否适用?若适用,应怎样计算?【学生活动】学生小组讨论、交流、发言汇报.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分,教师巡视,并及时反馈,特别是漏乘现象.四、典例精析,拓展新知例甲、乙二人共同计算一道整式乘法:(2x+a)·(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中x的系数,得到的结果为2x2-9x+10.(1)你能知道式子中a、b的值各是多少吗?(2)请你计算出这道整式乘法的正确结果.【分析】甲抄错了a的符号,即甲的计算式为(2x-a)(3x+b)=6x2-(3a-2b)x-ab.对比得到的结果可得-(3a-2b)=11;乙漏抄了第二个多项式中x的系数,即乙的计算式为(2x+a)(x+b)=2x2+(a+2b)x+ab.对比得到的结果可得出a,b的值.解:(1)(2x-a)(3x+b)=6x2-(3a-2b)x-ab=6x2+11x-10.(2)(2x+a)(x+b)=2x2+(a+2b)x+ab=2x2-9x+10.∴-(3a-2b)=11,a+2b=-9,解得a=-5,b=-2.(2)原式=(2x-5)(3x-2)=6x2-19x+10.五、运用新知,深化理解\n若多项式(x2+mx+n)(x2-3x+4)展开后不含x3项和x2项,试求m、n的值.解:原式=x4+mx3+nx2-3x3-3mx2-3nx+4x2+4mx+4n=x4+(m-3)x3+(n-3m+4)x2+(4m-3n)x+4n,由题意得:m-3=0,且n-3m+4=0∴m=3,n=5.【教学说明】教师提示各项系数对应,即待定系数法.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课推导多项式乘多项式法则时,从单项式乘多项式法则入手,用换元思想直接推导,思维有根基,为防止本节课中最大错误——漏乘现象,教师设置了一个探究关于多项式相乘后(没合并同类项前)的项数问题,很好的避免了这个错误.典例精析中的待定系数法初次接触,注意对学习困难的学生进行及时指导.

相关推荐