沪科版(2022)七年级数学上册教案:2.1.2代数式的意义(2)
doc
2022-08-15 13:00:07
2页
第2课时代数式的意义【知识与技能】能根据代数式和具体问题说出一个代数式表示的数量关系.【过程与方法】经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.【情感态度】在与他人交流过程中,感受数学活动的生动魅力,激发学生学习数学的兴趣.【教学重点】会求代数式的值并解释代数式值的实际意义.【教学难点】利用代数式求值推断代数式所反映的规律.一、情境导入,初步认识【情境】一位医生研究得出由父母身高预测子女成年后身高的公式:儿子身高是由父母身高的和的一半,再乘以1.08;女儿的身高是父亲身高的0.923倍加上母亲身高的和再除以2.(1)已知父亲身高a米,母亲身高b米,试用代数式表示儿子和女儿的身高;(2)女生小红父亲身高1.75米,母亲身高1.62米;男生小明的父亲身高1.70米,母亲身高1.60米.预测成年以后小红和小明谁个子高?【教学说明】利用学生十分关注的身高问题,调动起学生的兴趣,由此也告知学生数学来源于生活.二、思考探究,获取新知代数式的意义问题代数式的意义是什么?【教学说明】让学生明确代数式的意义,说出一个代数式所表示的实际意义.【归纳结论】说出代数式的意义,关键是要弄清它们所表示的数量之间的运算关系.三、运用新知,深化理解1.用语言叙述代数式a2-b2,正确的是()A.a,b两数的平方差B.a与b差的平方\nC.a与b的平方的差D.b,a两数的平方差2.代数式的意义是()A.a与b的3倍除a与b的积B.a与b的和的3倍除以a与b的积的商C.a的3倍与b的和除以a与b的积D.a与b的3倍的和除以a与b的积3.说出下列代数式的意义:(1)2a-b(2)2(a-b)(3)a-2b【教学说明】学生通过分析,与同伴交流,正确地列出代数式,让学生初步感受怎样列代数式.【答案】1.A2.B3.(1)a的2倍与b的差.(2)a与b的差的2倍.(3)a与b的2倍的差.四、师生互动,课堂小结1.让学生充分发表自己的感受,相互补充.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?1.布置作业:从教材第60、62页“练习”和第67页“习题2.1”中选取.2.完成同步练习册中本课时的练习.这节课学生进一步理解了代数式和代数式值的概念,锻炼学生的计算能力,激发学生的兴趣.