当前位置: 首页 > 初中 > 数学 > 第2章一元二次方程2.2一元二次方程的解法第5课时课件(湘教版)

第2章一元二次方程2.2一元二次方程的解法第5课时课件(湘教版)

ppt 2022-08-16 18:00:06 16页
剩余12页未读,查看更多需下载
第2章一元二次方程2.2一元二次方程的解法第5课时\n学习目标1.理解用因式分解法解方程的依据.2.会用因式分解法解一些特殊的一元二次方程.(重点)3.会根据方程的特点选用恰当的方法解一元二次方程.(难点)\n导入新课情境引入我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x-1)=0时,可转化为两个一元一次方程x+1=0或x-1=0来解,你能求(x+3)(x-5)=0的解吗?\n讲授新课引例:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过xs物体离地面的高度(单位:m)为10-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗(精确到0.01s)?分析:设物体经过xs落回地面,这时它离地面的高度为0,即10x-4.9x2=0①因式分解法解一元二次方程\n解:解:∵a=4.9,b=-10,c=0.∴b2-4ac=(-10)2-4×4.9×0=100.公式法解方程10x-4.9x2=0.配方法解方程10x-4.9x2=0.10x-4.9x2=0.\n因式分解如果a·b=0,那么a=0或b=0.两个因式乘积为0,说明什么?或降次,化为两个一次方程解两个一次方程,得出原方程的根这种解法是不是很简单?10x-4.9x2=0①x(10-4.9x)=0②x=010-4.9x=0\n这种通过因式分解,将一个一元二次方程转化为两个一元一次方程来求解的方法叫做因式分解法.要点归纳因式分解法的概念因式分解法的基本步骤一移-----方程的右边=0;二分-----方程的左边因式分解;三化-----方程化为两个一元一次方程;四解-----写出方程两个解;简记歌诀:右化零左分解两因式各求解\n试一试:下列各方程的根分别是多少?(1)x(x-2)=0;(1)x1=0,x2=2;(2)(y+2)(y-3)=0;(2)y1=-2,y2=3;(3)(3x+6)(2x-4)=0;(3)x1=-2,x2=2;(4)x2=x.(4)x1=0,x2=1.\n例1用因式分解法解下列方程:因式分解,得于是得x=0或x-8=0,x1=0,x2=8.(2)移项,得因式分解,得(5x-1)(2x-3)=0.于是得5x-1=0或2x-3=0,x(x-8)=0.典例精析解:(1)原方程可化为\n即于是得65-2x=0或5-2x=0,解:原方程可化为解得\n例2解下列方程:解:(1)因式分解,得于是得x-2=0或x+1=0,x1=2,x2=-1.(2)移项、合并同类项,得因式分解,得(2x+1)(2x-1)=0.于是得2x+1=0或2x-1=0,(x-2)(x+1)=0.典例精析\n1.解方程x(x+1)=2时,要先把方程化为;再选择适当的方法求解,得方程的两根为x1=,x2=.x2+x-2=0-21当堂练习\n2.下面的解法正确吗?如果不正确,错误在哪?并请改正过来.解方程(x-5)(x+2)=18.解:原方程化为:(x-5)(x+2)=18.①由x-5=3,得x=8;②由x+2=6,得x=4;③所以原方程的解为x1=8或x2=4.解:原方程化为:x2-3x-28=0,(x-7)(x+4)=0,x1=7,x2=-4.\n解:化为一般式为因式分解,得x2-2x+1=0.(x-1)(x-1)=0.有x-1=0或x-1=0,x1=x2=1.解:因式分解,得(2x+11)(2x-11)=0.有2x+11=0或2x-11=0,3.解方程:\n4.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为r,根据题意(r+5)2×π=2r2π.因式分解,得于是得答:小圆形场地的半径是\n课堂小结因式分解法概念步骤简记歌诀:右化零左分解两因式各求解如果a·b=0,那么a=0或b=0.原理将方程左边因式分解,右边=0.因式分解的方法有ma+mb+mc=m(a+b+c);a2±2ab+b2=(a±b)2;a2-b2=(a+b)(a-b).

相关推荐