当前位置: 首页 > 初中 > 数学 > 第一章特殊平行四边形1.2矩形的性质与判定第3课时矩形的性质判定与其他知识的综合课件(北师大版)

第一章特殊平行四边形1.2矩形的性质与判定第3课时矩形的性质判定与其他知识的综合课件(北师大版)

pptx 2022-08-17 09:00:06 24页
剩余20页未读,查看更多需下载
第一章特殊平行四边形1.2矩形的性质与判定(第2课时矩形的判定)\n1.回顾矩形的性质及判定方法.2.矩形的性质和判定方法与其他有关知识的综合运用.(难点)学习目标\n问题1:矩形有哪些性质?ABCDO①是轴对称图形;②四个角都是直角;③对角线相等且平分.①定义:一组邻边相等且有一个角是直角的平行四边形②有一组邻边相等的矩形③有一个角是直角的菱形问题2:矩形有判定方法有哪些?导入新课\nABCDOE例1:如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.矩形的性质与判定综合运用讲授新课知识点1\nHGFEDCBA证明:连接AC、BD.∵四边形ABCD是矩形,∴AC=BD.∵点E、F、G、H为各边中点,∴EF=FG=GH=HE,∴四边形EFGH是菱形.例2如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形.\nCABDEFGH【变式题】如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是什么四边形?解:四边形EFGH是菱形.又∵AC=BD,∵点E,F,G,H为各边中点,∴EF=FG=GH=HE,∴四边形EFGH是菱形.顺次连接对角线相等的四边形的各边中点,得到四边形是菱形.归纳理由如下:连接AC,BD.\nABCDEFGH拓展1如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?解:连接AC,BD.∵点E,F,G,H为各边中点,∴四边形EFGH是平行四边形.拓展2如图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?四边形EFGH是矩形.同学们自己去解答吧\n例3:如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE,求AE的长.分析:由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AD=6,即可求得AE的长.\n解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2.∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∴∠ADE=90°,∠ABD=30°,∴AE=AD=3.\n例4:已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)连接DE,交AC于点F,请判断四边形ABDE的形状,并证明;(3)线段DF与AB有怎样的关系?请直接写出你的结论.\n证明:∵在△ABC中,AB=AC,AD是BC边的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°.∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°.∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形.(1)求证:四边形ADCE为矩形;\n解:四边形ABDE是平行四边形,理由如下:由(1)知,四边形ADCE为矩形,则AE=CD,AC=DE.又∵AB=AC,BD=CD,∴AB=DE,AE=BD,∴四边形ABDE是平行四边形.(2)连接DE,交AC于点F,请判断四边形ABDE的形状,并证明;\n解:DF∥AB,DF=AB.理由如下:∵四边形ADCE为矩形,∴AF=CF,∵BD=CD,∴DF是△ABC的中位线,∴DF∥AB,DF=AB.(3)线段DF与AB有怎样的关系?请直接写出你的结论.【点评】此题考查了矩形的判定与性质、三线合一以及三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.\n例5:如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF.(1)BD与DC有什么数量关系?请说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.\n解:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE.∵E是AD的中点,∴AE=DE.在△AEF和△DEC中,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC.\n(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.【方法总结】本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.\n1.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1,S2,则S1,S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S2B随堂练习\n2.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,AH⊥BC于点H,连接EH,若DF=10cm,则EH等于()A.8cmB.10cmC.16cmD.24cmB\n3.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE=____度.75\n4.如图,在矩形ABCD中,AB=2,BC=4,点A,B分别在y轴,x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标为.\n5.如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求四边形OBEC的面积.解:(1)∵四边形ABCD是菱形,∴AC⊥BD.在Rt△OCD中,由勾股定理得OC=4cm;(2)∵CE∥DB,BE∥AC,∴四边形OBEC为平行四边形.又∵AC⊥BD,即∠COB=90°,∴平行四边形OBEC为矩形.∵OB=OD=3cm,∴S矩形OBEC=OB·OC=4×3=12(cm2).\n6.如图,点D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:CD=AN;(2)若∠AMD=2∠MCD,求证:四边形ADCN是矩形.证明:(1)证△AMD≌△CMN得AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN.\n(2)若∠AMD=2∠MCD,求证:四边形ADCN是矩形.证明:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由(1)知四边形ADCN是平行四边形,∴MD=MN=MA=MC,∴AC=DN,∴▱ADCN是矩形.\n与全等三角形的结合矩形的性质与判定与平面直角坐标系的结合折叠问题课堂小结

相关推荐