当前位置: 首页 > 初中 > 数学 > 第一章全等三角形1.3探索三角形全等的条件1SAS教学课件(苏科版八上)

第一章全等三角形1.3探索三角形全等的条件1SAS教学课件(苏科版八上)

pptx 2022-08-18 14:00:10 18页
剩余14页未读,查看更多需下载
1.3探索三角形全等的条件(1)\n当两个三角形满足六个条件中的3个时,有四种情况:三角×三边√两边一角?两角一边思考\n三角形全等的判定(“边角边”)问题:已知一个三角形的两条边和一个角,那么这两条边与这一个角的位置上有几种可能性呢?ABCABC“两边及夹角”“两边和其中一边的对角”它们能判定两个三角形全等吗?讲授新课\n尺规作图画出一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A(即使两边和它们的夹角对应相等).把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?ABC探究活动1:SAS能否判定的两个三角形全等动手试一试\nABCA′DEB′C′作法:(1)画∠DA'E=∠A;(2)在射线A'D上截取A'B'=AB,在射线A'E上截取A'C'=AC;(3)连接B'C'.?思考:①△A′B′C′与△ABC全等吗?如何验证?②这两个三角形全等是满足哪三个条件?\n在△ABC和△DEF中,∴△ABC≌△DEF(SAS).文字语言:两边及其夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).知识要点“边角边”判定方法几何语言:AB=DE,∠A=∠D,AC=AF,ABCDEF必须是两边“夹角”\n例1:如果AB=CB,∠ABD=∠CBD,那么△ABD和△CBD全等吗?分析:△ABD≌△CBD.边:角:边:AB=CB(已知),∠ABD=∠CBD(已知),?ABCD(SAS)BD=BD(公共边).典例精析解:在△ABD和△CBD中,AB=CB(已知),∠ABD=∠CBD(已知),∴△ABD≌△CBD(SAS).BD=BD(公共边),\n变式1:已知:如图,AB=CB,∠1=∠2.试说明:(1)AD=CD;(2)DB平分∠ADC.ADBC1243在△ABD与△CBD中,解:∴△ABD≌△CBD(SAS),AB=CB(已知),∠1=∠2(已知),BD=BD(公共边),∴AD=CD,∠3=∠4,∴DB平分∠ADC.\nABCD变式2:已知:AD=CD,DB平分∠ADC,试说明:∠A=∠C.12在△ABD与△CBD中,解:∴△ABD≌△CBD(SAS),AD=CD(已知),∠1=∠2(已证),BD=BD(公共边),∴∠A=∠C.∵DB平分∠ADC,∴∠1=∠2.\n例2:已知:如图,AB=DB,CB=EB,∠1=∠2,试说明:∠A=∠D.解:∵∠1=∠2(已知),∴∠1+∠DBC=∠2+∠DBC(等式的性质),即∠ABC=∠DBE.在△ABC和△DBE中,AB=DB(已知),∠ABC=∠DBE(已证),CB=EB(已知),∴△ABC≌△DBE(SAS).∴∠A=∠D(全等三角形的对应角相等).1A2CBDE\n想一想:如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?BACD△ABC和△ABD满足AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.探究活动2:SSA能否判定两个三角形全等\n画一画:画△ABC和△DEF,使∠B=∠E=30°,AB=DE=5cm,AC=DF=3cm.观察所得的两个三角形是否全等?ABMCDABCABD有两边和其中一边的对角分别相等的两个三角形不一定全等.结论\n1.在下列图中找出全等三角形进行连线.Ⅰر30º8cm9cmⅥر30º8cm8cmⅣⅣ8cm5cmⅡ30ºر8cm5cmⅤ30º8cmر5cmⅧ8cm5cmر30º8cm9cmⅦⅢر30º8cm8cmⅢ随堂练习\n2.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是()A.∠A=∠DB.∠E=∠CC.∠A=∠CD.∠ABD=∠EBCD\n3.如图,点E、F在AC上,AD//BC,AD=CB,AE=CF.试说明:△AFD≌△CEB.FABDCE解:∵AD//BC,∴∠A=∠C,∵AE=CF,在△AFD和△CEB中,AD=CB∠A=∠CAF=CE∴△AFD≌△CEB(SAS).∴AE+EF=CF+EF,即AF=CE.(已知),(已证),(已证),\n4.已知:如图,AB=AC,AD是△ABC的角平分线,试说明:BD=CD.解:∵AD是△ABC的角平分线,∴∠BAD=∠CAD,在△ABD和△ACD中,AB=AC∠BAD=∠CADAD=AD∴△ABD≌△ACD(SAS).(已知),(已证),(已证),∴BD=CD.\n边角边内容两边及其夹角分别相等的两个三角形全等(简写成“SAS”)应用为证明线段和角相等提供了新的证法注意1.已知两边,必须找“夹角”2.已知一角和这角的一夹边,必须找这角的另一夹边课堂小结\n

相关推荐