当前位置: 首页 > 初中 > 数学 > 第2章三角形2.1三角形第3课时教学课件(湘教版八上)

第2章三角形2.1三角形第3课时教学课件(湘教版八上)

ppt 2022-08-18 18:00:07 43页
剩余39页未读,查看更多需下载
第2章三角形2.1三角形第3课时\n1.通过操作活动,发现三角形的内角和是180°;2.会利用三角形的内角和求三角形中未知角的度数;(重点、难点)3.了解三角形的外角及性质.学习目标\n我的形状最小,那我的内角和最小.我的形状最大,那我的内角和最大.不对,我有一个钝角,所以我的内角和才是最大的.一天,三类三角形通过对自身的特点,讲出了自己对三角形内角和的理解,请同学们作为小判官给它们评判一下吧.导入新课情境引入\n我们在小学已经知道,任意一个三角形的内角和等于180°.与三角形的形状、大小无关,所以它们的说法都是错误的.思考:除了度量以外,你还有什么办法可以验证三角形的内角和为180°呢?折叠还可以用拼接的方法,你知道怎样操作吗?\n锐角三角形测量480720600600+480+720=1800(学生运用学科工具—量角器测量演示)\n剪拼ABC21(小组合作,讨论剪拼方法。各小组代表板演剪拼过程)\n三角形的三个内角拼到一起恰好构成一个平角.你能用数学的方法说明这个结论吗?还有其他的拼接方法吗?讲授新课探究:在纸上任意画一个三角形,将它的内角剪下拼合在一起.三角形的内角和及三角形按角的分类\n验证结论三角形三个内角的和等于180°.说明:∠A+∠B+∠C=180°.已知:△ABC.方法1:过点A作l∥BC,∴∠B=∠1.(两直线平行,内错角相等)∠C=∠2.(两直线平行,内错角相等)∵∠2+∠1+∠BAC=180°,∴∠B+∠C+∠BAC=180°.12\n方法2:延长BC到D,过点C作CE∥BA,∴∠A=∠1.(两直线平行,内错角相等)∠B=∠2.(两直线平行,同位角相等)又∵∠1+∠2+∠ACB=180°,∴∠A+∠B+∠ACB=180°.CBAED12\nCBAEDF方法3:过D作DE∥AC,作DF∥AB.∴∠C=∠EDB,∠B=∠FDC.(两直线平行,同位角相等)∠A+∠AED=180°,∠AED+∠EDF=180°,(两直线平行,同旁内角相补)∴∠A=∠EDF.∵∠EDB+∠EDF+∠FDC=180°,∴∠A+∠B+∠C=180°.想一想:同学们还有其他的方法吗?\n思考:多种方法证明三角形内角和等于180°的核心是什么?借助平行线的“移角”的功能,将三个角转化成一个平角.CAB12345lACB12345lP6mABCDE\nC24AB3EQDFPGH1BGC24A3EDFH1试一试:同学们按照上图中的辅助线,给出证明步骤?\n例1如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.ABCD解:由∠BAC=40°,AD是△ABC的角平分线,得∠BAD=∠BAC=20°.在△ABD中,∠ADB=180°-∠B-∠BAD=180°-75°-20°=85°.典例精析\n【变式题】如图,CD是∠ACB的平分线,DE∥BC,∠A=50°,∠B=70°,求∠EDC,∠BDC的度数.解:∵∠A=50°,∠B=70°,∴∠ACB=180°-∠A-∠B=60°.∵CD是∠ACB的平分线,∴∠BCD=∠ACB=30°.∵DE∥BC,∴∠EDC=∠BCD=30°,在△BDC中,∠BDC=180°-∠B-∠BCD=80°.\n例2如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.解:∵DE⊥AB,∴∠FEA=90°.∵在△AEF中,∠FEA=90°,∠A=30°,∴∠AFE=180°-∠FEA-∠A=60°.又∵∠CFD=∠AFE,∴∠CFD=60°.∴在△CDF中,∠CFD=60°,∠FCD=80°,∠D=180°-∠CFD-∠FCD=40°.\n基本图形由三角形的内角和易得∠A+∠B=∠C+∠D.由三角形的内角和易得∠1+∠2=∠3+∠4.总结归纳4\n例3在△ABC中,∠A的度数是∠B的度数的3倍,∠C比∠B大15°,求∠A,∠B,∠C的度数.解:设∠B为x°,则∠A为(3x)°,∠C为(x+15)°,从而有3x+x+(x+15)=180.解得x=33.所以3x=99,x+15=48.即∠A,∠B,∠C的度数分别为99°,33°,48°.和差倍分问题借助方程来解.这是一个重要的数学思想.\n一个三角形的三个内角中,最多有几个直角?最多有几个钝角?因为三角形的内角和等于180°,因此最多有一个直角或一个钝角.议一议\n三个角都是锐角的三角形叫做锐角三角形;锐角三角形有一个角是钝角的三角形叫做钝角三角形.钝角三角形有一个角是直角的三角形叫做直角三角形;直角三角形直角边直角边斜边ABC直角三角形ABC可以写成Rt△ABC;\n②在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC是_________三角形.练一练:①在△ABC中,∠A=35°,∠B=43°,则∠C=.③在△ABC中,∠A=∠B+10°,∠C=∠A+10°,则∠A=,∠B=,∠C=.102°直角60°50°70°\n定义如图,把△ABC的一边BC延长,得到∠ACD,像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.∠ACD是△ABC的一个外角CBAD三角形的外角的概念\n问题1如图,延长AC到E,∠BCE是不是△ABC的一个外角?∠DCE是不是△ABC的一个外角?E在三角形每个顶点处都有两个外角.∠ACD与∠BCE为对顶角,∠ACD=∠BCE;CBAD∠BCE是△ABC的一个外角,∠DCE不是△ABC的一个外角.问题2如图,∠ACD与∠BCE有什么关系?在三角形的每个顶点处有多少个外角?\nABC画一画画出△ABC的所有外角,共有几个呢?每一个三角形都有6个外角.每一个顶点相对应的外角都有2个,且这2个角为对顶角.\n三角形的外角应具备的条件:①角的顶点是三角形的顶点;②角的一边是三角形的一边;③另一边是三角形中一边的延长线.∠ACD是△ABC的一个外角CBAD每一个三角形都有6个外角.总结归纳\nFABCDE如图,∠BEC是哪个三角形的外角?∠AEC是哪个三角形的外角?∠EFD是哪个三角形的外角?∠BEC是△AEC的外角;∠AEC是△BEC的外角;∠EFD是△BEF和△DCF的外角.练一练\n三角形的外角ACBD相邻的内角不相邻的内角问题1如图,△ABC的外角∠BCD与其相邻的内角∠ACB有什么关系?∠BCD与∠ACB互补.三角形的外角的性质\n问题2如图,△ABC的外角∠BCD与其不相邻的两内角(∠A,∠B)有什么关系?三角形的外角ACBD相邻的内角不相邻的内角∵∠A+∠B+∠ACB=180°,∠BCD+∠ACB=180°,∴∠A+∠B=∠BCD.你能用作平行线的方法证明此结论吗?\nD解:过C作CE平行于AB,ABC12∴∠1=∠B,(两直线平行,同位角相等)∠2=∠A,(两直线平行,内错角相等)∴∠ACD=∠1+∠2=∠A+∠B.E已知:如图,△ABC,试说明:∠ACD=∠A+∠B.验证结论\n三角形外角的性质:ABCD(((三角形的外角等于与它不相邻的两个内角的和.应用格式:∵∠ACD是△ABC的一个外角∴∠ACD=∠A+∠B.知识要点\n练一练:说出下列图形中∠1和∠2的度数:ABCD(((80°60°(21(1)ABC((((2150°32°(2)∠1=40°,∠2=140°∠1=18°,∠2=130°\n例4如图,∠A=42°,∠ABD=28°,∠ACE=18°,求∠BFC的度数.∵∠BEC是△AEC的一个外角,∴∠BEC=∠A+∠ACE,∵∠A=42°,∠ACE=18°,∴∠BEC=60°.∵∠BFC是△BEF的一个外角,∴∠BFC=∠ABD+∠BEF,∵∠ABD=28°,∠BEC=60°,∴∠BFC=88°.解:FACDEB\n例5如图,P为△ABC内一点,∠BPC=150°,∠ABP=20°,∠ACP=30°,求∠A的度数.解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.E\n解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC+∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC-∠ABE=120°-20°=100°.\n【变式题】(一题多解)如图,∠A=51°,∠B=20°,∠C=30°,求∠BDC的度数.ABCD(((51°20°30°思路点拨:添加适当的辅助线将四边形问题转化为三角形问题.\nABCD((20°30°解法一:连接AD并延长于点E.在△ABD中,∠1+∠ABD=∠3,在△ACD中,∠2+∠ACD=∠4.因为∠BDC=∠3+∠4,∠BAC=∠1+∠2,所以∠BDC=∠BAC+∠ABD+∠ACD=51°+20°+30°=101°.E))12)3)4你发现了什么结论?\nABCD(((51°20°30°E)1解法二:延长BD交AC于点E.在△ABE中,∠1=∠ABE+∠BAE,在△ECD中,∠BDC=∠1+∠ECD.所以∠BDC=∠BAC+∠ABD+∠ACD=51°+20°+30°=101°.解法三:连接延长CD交AB于点F(解题过程同解法二).)2F解题的关键是正确的构造三角形,利用三角形外角的性质及转化的思想,把未知角与已知角联系起来求解.总结\n如图,试比较∠2、∠1的大小;如图,试比较∠3、∠2、∠1的大小.图图解:∵∠2=∠1+∠B,∴∠2>∠1.解:∵∠2=∠1+∠B,∠3=∠2+∠D,∴∠3>∠2>∠1.拓展探究三角形的外角大于与它不相邻的内角.\n当堂练习1.求出下列各图中的x值.x=70x=60x=30x=50\n2.(1)如图,∠BDC是________的外角,也是的外角;(2)若∠B=45°,∠BAE=36°,∠BCE=20°,试求∠AEC的度数.ABCDE△ADE△ADC解:根据三角形外角的性质有∠ADC=∠B+∠BCE,∠AEC=∠ADC+∠BAE.所以∠AEC=∠B+∠BCE+∠BAE=45°+20°+36°=101°.\n解:因为∠ADC是△ABD的外角.3.如图,D是△ABC的BC边上一点,∠B=∠BAD,∠ADC=80°,∠BAC=70°,求:(1)∠B的度数;(2)∠C的度数.在△ABC中,∠B+∠BAC+∠C=180°,∠C=180º-40º-70º=70°.所以∠ADC=∠B+∠BAD=80°.又因为∠B=∠BAD,ABCD\n4.如图,四边形ABCD中,点E在BC上,∠A+∠ADE=180°,∠B=78°,∠C=60°,求∠EDC的度数.解:∵∠A+∠ADE=180°,∴AB∥DE,∴∠CED=∠B=78°.又∵∠C=60°,∴∠EDC=180°-(∠CED+∠C)=180°-(78°+60°)=42°.\nABCDE12FG解:∵∠1是△FBE的外角,∴∠1=∠B+∠E,同理∠2=∠A+∠D.在△CFG中,∠C+∠1+∠2=180º,∴∠A+∠B+∠C+∠D+∠E=180º.5.如图,求∠A+∠B+∠C+∠D+∠E的度数.能力提升:\n课堂小结三角形三角形内角和定理三角形外角的性质锐角三角形直角三角形钝角三角形三个内角和为180°↑三角形的一个外角等于与它不相邻的两个内角的和↓

相关推荐