第4章一元二次方程4.1一元二次方程2课件(青岛版九上)
pptx
2022-08-20 13:00:03
18页
2.1一元二次方程(2)\n1.经历对一元二次方程根的探索过程并理解其意义.(重点)3.会估算一元二次方程的根.(难点)学习目标\n问1:一元二次方程有哪些特点?①只含有一个未知数;②未知数的最高次项系数是2;③整式方程问2:一元二次方程的一般形式是什么?ax2+bx+c=0(a,b,c为常数,a≠0)复习引入导入新课\n问题1:在上一课中,我们知道四周未铺地毯部分的宽度x满足方程(8-2x)(5-2x)=18,你能求出这个宽度吗?(1)x可能小于0吗?说说你的理由.(2)x可能大于4吗?可能大于2.5吗?说说你的理由.一元二次方程根的估算讲授新课\n(3)完成下表:x00.511.52(8-2x)(5-2x)(4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴进行交流.410182840\n问题2:在上一课中,梯子的底端滑动的距离x满足方程x2+12x-15=0.10m8m1mxm你能猜出滑动距离x的大致范围吗?(1)小明认为底端也滑动了1m,他的说法正确吗?为什么?(2)底端滑动的距离可能是2m吗?可能是3m吗?为什么?\n下面是小亮的求解过程:x00.511.52…x2+12x-15-15-8.75-25.2513…可知x取值的大致范围是:1<x<1.5.进一步计算:所以1.1<x<1.2,因此x整数部分是1,十分位部分是1.x1.11.21.31.4x2+12x-15-0.590.842.293.76\n用“两边夹”思想解一元二次方程的步骤:(1)估计一个大致范围;(2)取中间值(靠近一端的值)缩小范围,直到确定出个位上的数字;(3)继续取值缩小范围,确定十分位上的数字;(4)继续取值缩小范围,确定百分位上的数字……需要注意,如果不要求精确度,估计时还可以进行下去.用“夹逼法”求一元二次方程的根时,一般都要确定根的近似值的精确度.规律方法上述求解是利用了“两边夹”的思想.归纳总结\n例2:一名跳水运动员进行10m跳台跳水训练,在正常情况下,运动员必需在距水面5m以前完成规定的翻腾动作,并且调整好入水姿势,否则就容易出现失误.假设运动员起跳后的运动时间t(s)和运动员距水面的高度h(m)满足关系:h=10+2.5t-5t2.那么他最多有多长时间完成规定动作?5=10+2.5t-5t2.2t2-t-2=0.即解:根据题意得完成下表(在0<t<3这个范围内取值计算,逐步逼近):根据题意,t的取值范围大致是0<t<3.\n完成下表(在0<t<3这个范围内取值计算,逐步逼近):由此看出,可以使2t2-t-2的值为0的t的范围是1.2<t<1.3.故可知运动员完成规定动作最多有1.3s.t……2t2-t-2……011.11.21.31.423-2-1-0.68-0.320.080.52413根据题意,t的取值范围大致是0<t<3.\n1.请求出一元二次方程x2-2x-1=0的正数根(精确到0.1).解:(1)列表.依次取x=0,1,2,3,…由上表可发现,当2<x<3时,-1<x2-2x-1<2;x0123…x2-2x-1-1-2-12…随堂练习\n(2)继续列表,依次取x=2.1,2.2,2.3,2.4,2.5,…由表发现,当2.4<x<2.5时,-0.04<x2-2x-1<0.25;(3)取x=2.45,则x2-2x-1≈0.1025.∴2.4<x<2.45,∴x≈2.4.x2.22.32.42.5…x2-2x-1-0.79-0.31-0.040.25…\n2.根据题意,列出方程,并估算方程的解:一面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?解:设苗圃的宽为xm,则长为(x+2)m,根据题意,得x(x+2)=120.即x2+2x-120=0.120m2(x+2)mxm根据题意,x的取值范围大致是0<x<11.\n根据题意,x的取值范围大致是0<x<11.解方程x2+2x-120=0.完成下表(在0<x<11这个范围内取值计算,逐步逼近):x……x2+2x–120……891011-40-21023所以x=10.因此这苗圃的长是12米,宽是10米.\n3.若关于x的一元二次方程(m+2)x2+5x+m2-4=0有一个根为0,求m的值.二次项系数不为零不容忽视解:将x=0代入方程m2-4=0,解得m=±2.∵m+2≠0,∴m≠-2,综上所述:m=2.\n拓广探索已知关于x的一元二次方程ax2+bx+c=0(a≠0)一个根为1,求a+b+c的值.解:由题意,得\n思考:1.若a+b+c=0,你能通过观察,求出方程ax2+bx+c=0(a≠0)的一个根吗?解:由题意,得∴方程ax2+bx+c=0(a≠0)的一个根是1.2.若a-b+c=0,4a+2b+c=0,你能通过观察,求出方程ax2+bx+c=0(a≠0)的一个根吗?x=2\n解一元二次方程(“两边夹”方法)确定其解的大致范围列表、计算进行两边“夹逼”……求得近似解课堂小结