第七章平行线的证明7.2定义与命题第1课时定义与命题课件(北师大版八上)
pptx
2022-08-20 19:58:02
25页
第七章平行线的证明7.2定义与命题(第1课时定义与命题)\n1.理解定义、命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式.(重点)2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.(难点)学习目标\n观察与思考小华与小刚正在津津有味地阅读《科学》.这个黑客终于被逮住了.是的,现在的因特网广泛运用于我们的生活中,给我们带来了方便,但…….这个黑客是个小偷吧?可能是个喜欢穿黑衣服的贼.坐在旁边的两个人一边听着他们的谈话,一边也在悄悄地议论着.导入新课\n小明的百米成绩有进步,已达到9秒9.好!继续努力,争取超过10秒.不要再抢啦!每个人发一个球!有一位田径教练向领导汇报训练成绩;相传,阎锡山在观看士兵篮球赛,双方争抢非常激烈.于是命令:\n交流必须对某些名称和术语有共同的语言认识才能进行.根据上面的情境,你能得出什么结论?要对名称和术语的含义加以描述,作出明确规定.也就是给出它们的定义.请你举出你所熟知的一些定义例子讲授新课定义知识点1\n例如:1.“具有中华人民共和国国籍的人,叫作中华人民共和国公民”是“中华人民共和国公民”的定义;2.“两点之间线段的长度,叫作这两点之间的距离”是“两点之间的距离”的定义;3.“在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫作一元一次方程”是“一元一次方程”的定义.\n你还能举出曾学过的“定义”吗?1.无限不循环小数称为无理数;2.两条边相等的三角形叫作等腰三角形;3.能够完全重合的两个三角形叫作全等三角形;4.一般的,如果在某个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y有唯一确定的值与它对应,那么我们称y是x的函数.想一想\n下面的语句中,哪些语句对事情作出了判断,哪些没有?与同伴进行交流.1.任何一个三角形一定有一个角是直角;2.对顶角相等;3.无论n为怎样的自然数,式子n2-n+11的值都是质数;4.如果两天直线都和第三条直线平行,那么这两条直线也互相平行;5.你喜欢数学吗?6.作线段AB=CD.命题知识点2\n2.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.1.只要对一件事情作出了判断,不管正确与否,都是命题.如:相等的角是对顶角.注意:像这样判断一件事情的语句,叫作命题(statement).命题的概念概念学习\n典例精析例1:下列句子都是命题吗?(1)熊猫没有翅膀.如果一个动物是熊猫,那么它就没有翅膀.(2)对顶角相等.如果两个角是对顶角,那么它们就相等.(3)平行于同一条直线的两条直线平行.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.都是命题\n命题一般都可以写成“如果……那么……”的形式.反之,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.例如,下列句子都不是命题:(1)你喜欢数学吗?(2)作线段AB=CD.⑶清新的空气.⑷不许讲话!\n1.如果两个三角形的三条边对应相等,那么这两个三角形全等;2.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;这些命题有什么共同的结构特征?观察下列命题:\n命题一般都可以写成“如果……那么……”的形式.1.“如果”后接的部分是题设,2.“那么”后接的部分是结论.如命题:熊猫没有翅膀.改写为:如果这个动物是熊猫,那么它就没有翅膀.注意:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.\n命题题设结论已知事项由已知事项推出的事项两直线平行,同位角相等题设(条件)结论命题的组成:总结归纳\n例2:下列命题的条件是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;(2)如果a>b,b>c,那么a=c;(3)两角和其中一角的对边对应相等的两个三角形全等;(4)全等三角形的面积相等.\n解:(1)条件:两个角相等,结论:它们是对顶角.(2)条件:a>b,b>c,结论:a=c.(3)条件:两个三角形的两角和其中一角的对边对应相等,结论:这两个三角形全等.(4)条件:两个三角形全等,结论:它们的面积相等.\n特别规定:正确的命题叫真命题,错误的命题叫假命题.命题1:“如果一个数能被4整除,那么它也能被2整除”观察下列命题,你能发现这些命题有什么不同的特点吗?命题1是一个正确的命题;命题2是一个错误的命题.命题2:“如果两个角互补,那么它们是邻补角”想一想\n“因为早上我发现张三从玉米地那边过来,把一袋东西背回家,还发现我地里的玉米被人捌了,我知道张三家没有种玉米。所以我家玉米肯定是张三捌的.”片段1:一天早上,李老汉来到衙门里告状说:张三刚刚在他地里偷捌了一袋子玉米.吕县令立即派衙役将张三拘捕到县衙审讯:吕县令问李老汉:“你怎知是张三偷了你的玉米?”李老汉想证明什么?他是怎么证明的?这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.故事分析根据李老汉的证明,你能断定玉米是张三偷的吗?你觉得有疑点吗?\n片段2:县官一时拿不定主意,就问旁边的县丞道:“师爷,你怎么看?”县丞说“这事要证明是张三干的,还得弄清那袋子里装的是不是刚捌的玉米,还要看看地里的脚印是不是张三的,才行。如果袋子里装的是刚捌的玉米,且地里的脚印是张三的,那就一定是他偷的。”从结论出发,逆着寻找所需要的条件的思考过程,叫分析.在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么判断就很容易了.\n说明假命题的方法:举反例使之具有命题的条件,而不具有命题的结论.\n(1)同旁内角互补()(4)两点可以确定一条直线()(7)互为邻补角的两个角的平分线互相垂直()(2)一个角的补角大于这个角()判断下列命题的真假.真的用“√”,假的用“×表示.(5)两点之间线段最短()(3)相等的两个角是对顶角()×√(6)同角的余角相等()×√√√×练一练\n1.下列句子中,哪些是命题?哪些不是命题?⑴对顶角相等.⑵画一个角等于已知角.⑶两直线平行,同位角相等.⑷a、b两条直线平行吗?⑸温柔的李明明.⑹玫瑰花是动物.⑺若a2=4,求a的值.⑻若a2=b2,则a=b.不是是不是不是是不是是是(9)八荣八耻是我们做人的基本准则.是随堂练习\n2.下列句子中,哪些是命题?哪些不是命题?(1)正数大于一切负数吗?(2)两点之间线段最短.(3)不是无理数.(4)作一条直线和已知直线平行.(√)(×)(×)(√)\n如果在同一个三角形中,有两个角相等,那么这两个角所对的边也相等.3.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:⑴三条边对应相等的两个三角形全等;⑵在同一个三角形中,等角对等边;⑶对顶角相等.如果两个三角形有三条边对应相等,那么这两个三角形全等。条件条件如果两个角是对顶角,那么这两个角相等.条件结论结论结论\n定义与命题定义概念:判断一个事件的句子结构:如果……那么……分类:真命题、假命题命题课堂小结