2022年华东师大版数学九年级上册期末复习检测题附答案(四)
docx
2022-09-05 20:00:06
12页
华东师大版数学九年级上册期末复习检测题(时间:120分钟分值:120分)姓名:班级:分数: 一.选择题(共10小题,满分40分,每小题4分)1.如果y=+3,那么yx的算术平方根是( )A.2B.3C.9D.±32.下列式子中,为最简二次根式的是( )A.B.C.D.3.一元二次方程x2﹣5x﹣6=0的根是( )A.x1=1,x2=6B.x1=2,x2=3C.x1=1,x2=﹣6D.x1=﹣1,x2=64.现有6张完全相同的卡片,正面分别写着数字:,0,3.14,0.,,0.171171117…,现将所有卡片打乱顺序后正面朝下放置在桌面上,小明随机抽一张,恰好抽到无理数的概率是( )A.B.C.D.5.如图,正方形ABCD是一块绿化带,阴影部分EOFB,GHMN都是正方形的花圃,其中EOFB的顶点O是正方形中心.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.B.B.C.D.6.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1∶1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米第6题图7.如图,为了测得电视塔的高度AB,在D处用高为1m的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100m到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB为()A.50mB.51mC.(50+1)mD.101m\n第7题图8.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得( )A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=1089.已知关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x1x2=0,则a的值是( )A.a=1B.a=1或a=﹣2C.a=2D.a=1或a=210.将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是( )A.B.4C.或2D.4或 二.填空题(共6小题,满分24分,每小题4分)11.计算:= .12.已知=,则= .13.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为 .14.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为 .15.如图,点G为△ABC的重心,GE∥BC,BC=12,则GE= .16.如图所示,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣x(0≤x≤5),则下列结论:\n①AF=2;②S△POF的最大值是6;③当d=时,OP=;④OA=5.其中正确的有 (填序号). 三.解答题(共9小题,满分86分)17.(8分)计算:﹣()﹣1+﹣(π﹣3.14)0+|2﹣4|.18.(8分)解方程:2(x﹣3)=3x(x﹣3).19.(8分)先化简,再求值:(﹣),其中a=17﹣12,b=3+220.电视热播节目“最强大脑”激发了学生的思考兴趣,为满足学生的需求,某学校抽取部分学生举行“最强大脑”选拔赛,针对竞赛成绩分成以下六个等级A:0~50分;B:51~60分;C:61~70分;D:71~80分;E:81~90分;F:91~100分,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:\n(1)此次竞赛抽取的总人数为 ,请补全条形统计图;(2)若全市约有3万名在校学生,试估计全市学生中竞赛成绩在71~90分的人数约有多少?(3)若在此次接受调查的学生中,随机抽查一人,则此人的成绩在80分以上的概率是多少?21.一个袋中有3张形状大小完全相同的卡片,编号为1、2、3,先任取一张,将其编号记为m,再从剩下的两张中任取一张,将其编号记为n.(1)请用树状图或者列表法,表示事件发生的所有可能情况;(2)求关于x的方程x2+mx+n=0有两个不相等实数根的概率;(3)任选一个符合(2)题条件的方程,设此方程的两根为x1、x2,求+的值.22.(8分)如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60°.如果这时气球的高度CD为90米,且点A、D、B在同一直线上,求建筑物A、B间的距离.\n23.(8分)已知△ABC中的∠A与∠B满足(1-tanA)2+=0.(1)试判断△ABC的形状;(2)求(1+sinA)2-2-(3+tanC)0的值.24.(13分)在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的对边分别记为a,b,c,倍角三角形的三边a,b,c有什么关系呢?让我们一起来探索.(1)我们先从特殊的倍角三角形入手研究.请你结合图形填空:三三角形角形角的已知量图2∠A=2∠B=90°图3∠A=2∠B=60°(2)如图4,对于一般的倍角△ABC,若∠CAB=2∠CBA,∠CAB、∠CBA、∠C的对边分别记为a,b,c,a,b,c,三边有什么关系呢?请你作出猜测,并结合图4给出的辅助线提示加以证明;(3)请你运用(2)中的结论解决下列问题:若一个倍角三角形的两边长为5,6,求第三边长.(直接写出结论即可)25.(13分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.\n(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是 ;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.参考答案: 一.选择题1.B. 2.B. 3.D. 4.B.5.C.6.D 7.C8.B. 9.D. 10.D.二.填空题11.3 \n12.. 13.2018 14.140°.15.4. 16.①②④. 三.解答题17.【分析】根据零指数幂的意义、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣2+﹣1+4﹣2=. 18.【分析】移项后提取公因式x﹣3后利用因式分解法求得一元二次方程的解即可.【解答】解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=. 19.【分析】将原式利用二次根式的性质和运算法则化简为,由a=17﹣12=(3﹣2)2、b=3+2=(+1)2,代入计算可得.【解答】解:原式=(﹣)•=[﹣]•=•=,∵a=17﹣12=32﹣2××(2)2=(3﹣2)2,b=3+2=()2+2+1=(+1)2,∴原式====. 20.【分析】(1)分别作出点A、B、C向上平移6个单位得到的对应点,再顺次连接可得;(2)根据位似变换的定义作出点A、B的对应点,再顺次连接可得.\n【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求. 21.【分析】由根与系数的关系可用a表示出x1+x2和x1x2的值,利用条件可得到关于a的方程,可求得a的值,再利用根的判别式进行取舍.【解答】解:∵方程x2+2(a﹣1)x+a2﹣7a﹣4=0的两根为x1,x2,∴△≥0,即4(a﹣1)2﹣4(a2﹣7a﹣4)≥0,解得a≥﹣1,由根与系数的关系可得x1+x2=﹣2(a﹣1),x1x2=a2﹣7a﹣4,∵x1x2﹣3x1﹣3x2﹣2=0,∴a2﹣7a﹣4﹣3×[﹣2(a﹣1)]﹣2=0,解得a=4或a=﹣3,∵a≥﹣1,∴a=4. 22.【分析】根据相似三角形的性质,列出式子构建方程即可解决问题;【解答】解:由题意:AD⊥DE,DE∥BC,DE=20m,BC=50m,AD=16m,∴AB⊥BC,△ADE∽△ABC,∴=,∴=,∴AB=40(m),∴BD=AB﹣AD=40﹣16=24(m),答:这条河的宽度为24m. 23.【分析】(1)若购买x件(10<x<60),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)设第一批购买x件,则第二批购买(100﹣x)件,分两种情况:①当30<x≤40时,则60≤100﹣x<100;②当40<x<60时,则40<100﹣x<60;根据购买两批T恤衫一共花了9200元列出方程求解即可.【解答】解:(1)购买x件(10<x<60)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x.\n(2)设第一批购买x件,则第二批购买(100﹣x)件.①当30<x≤40时,则60≤100﹣x<100,则x(150﹣x)+80(100﹣x)=9200,解得x1=30(舍去),x2=40;②当40<x<60时,则40<100﹣x<60,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<60,所以无解;答:第一批购买数量为40件. 24.【分析】(1)图2的三角形,显然是等腰直角三角形,可设斜边c为2,那么a=b=,即可求得、的值,图3的解法同上.(2)由(1)的结论,可猜测a、b、c的等量关系应该是,可通过构造相似三角形来证明;延长CA至D,是得AD=AB;那么∠CAB=2∠A=2∠CBA,再加上公共角∠C,即可证得△CBD∽△CAB,由此得到所求的结论.(3)将已知的边长代入(2)的结论进行计算即可.【解答】解:(1)三角形角的已知量图2∠A=2∠B=90°图3∠A=2∠B=60°;(2分)(2)猜测a,b,c的关系是延长CA至D,使AD=AB(如图4);∵AD=AB,∴∠D=∠ABD,∴∠CAB=∠D+∠ABD=2∠D,∵∠CAB=2∠CBA,∴∠D=∠CBA,又∵∠C=∠C,∴△CBD∽△CAB,∴即.(3)①当a=5,b=6时,由(2)得:,解得c=﹣(不合题意舍去);②当a=6,b=5时,,解得c=;③当a=5,c=6时,,解得b=﹣3(负值舍去);④当a=6,c=5时,\n,解得b=4(负值舍去);⑤当b=5,c=6时,,解得a=(负值舍去);⑥当b=6,c=5时,,解得a=(负值舍去).综上可知:第三边的长为或或或4或. 25.【分析】(1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.【解答】解:(1)如图1,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵点E是DC的中点,DE=DF,∴点F是AD的中点,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,\n∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.故答案为:CH=AB.(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.如图2,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如图3,,∵CK≤AC+AK,∴当C、A、K三点共线时,CK的长最大,\n∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°﹣∠ADC﹣∠EHF=360°﹣90°﹣90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即线段CK长的最大值是.