23.1 图形的旋转 (第1课时)教案(人教版九年级数学上)
doc
2022-09-07 11:00:07
14页
23.1图形的旋转(第1课时)一、教学目标【知识与技能】通过观察生活中的具体实例认识旋转,探索它的基本性质.【过程与方法】在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.【情感态度与价值观】学生在实验探究、知识应用等数学活动中,能体验数学的具体、生动、灵活,增强数学应用意识,调动学生学习数学的主动性.二、课型新授课三、课时第1课时,共2课时。四、教学重难点【教学重点】归纳图形的旋转特征.【教学难点】旋转概念的形成过程及性质的探究过程.五、课前准备课件、图片等.\n六、教学过程(一)导入新课教师问:以前我们学过图形的平移、轴对称等变换,它们有哪些特征呢?想想看,并与同伴交流.学生思考并让学生感受到现实生活中存在着平移,轴对称变换.教师问:请观察下列图形的变化.1.新疆的风车田;(出示课件2)2.荷兰的大风车;(出示课件3)3.游乐场的摩天轮;(出示课件4)4.卫星拍摄到的台风“桑美”的中心旋涡;(出示课件5)5.钟表时针的转动;电扇上扇叶的转动.(出示课件6)(1)以上现象有什么共同特点?(2)钟表的指针、电扇的风叶在转动过程中,其形状、大小、位置是否发生变化呢?学生通过观察、思考、讨论,用自己的语言来描述这个现象的共同特征,初步感受到旋转的基本性质是绕某一固定点转动一定的角度.(二)探索新知探究一旋转的概念教师问:1.观察下列图形的运动,它有什么特点?(出示课件8)\n2.钟表的指针在不停地转动,从12时到4时,时针转动了_120度.(出示课件9)3.怎样来定义这种图形变换?学生观察后思考并口答:把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.教师问:1.风车风轮的每个叶片在风的吹动下转动到新的位置.(出示课件10)2.怎样来定义这种图形变换?学生观察后思考并口答:把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.师生共同归纳如下:旋转的概念:把一个平面图形绕着平面内某一个定点O转动一个角度,叫做图形的旋转.这个定点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P’,那么这两个点叫做这个旋转的对应点.线段OP与OP’叫做对应线段.\n出示课件12:如图点A绕_O点,往顺时针方向,转动了45度到点B.师生共同认定:旋转的三要素:旋转中心、旋转方向、旋转角度.出示课件13:例1如图,△ABC为等边三角形,点P在△ABC中,将△ABP旋转后能与△CBQ重合.(1)旋转中心是哪一点?(2)旋转角是多少度?(3)△BPQ是什么三角形?教师分析:(1)根据对应点到旋转中心的距离相等来确定旋转中心的位置.(2)对应点与旋转中心连线的夹角都等于旋转角.(3)由旋转角和对应边的关系可以得到答案.师生共同解答:解:(1)旋转中心是点B.\n(2)因为△ABC为等边三角形,当边AB旋转到边BC的位置时,正好转过了60°,所以旋转角的度数是60°.(3)BP=BQ,而旋转角又等于60°,所以∠PBQ=60°,这样△BPQ就是一个等边三角形.想一想:图形在旋转时,旋转的方向有几种?(出示课件15)教师提示:有两种情况,分别为逆时针方向旋转和顺时针方向旋转.出示课件16:巩固练习:若叶片A绕O顺时针旋转到叶片B,则旋转中心是______,旋转角是_________,旋转角等于____度,其中的对应点有_______、_______、_______、_______、_______、_______.学生口答:O;∠AOB;60;A与B;B与C;C与D;D与E;E与F;F与A出示课件17:师生共同认定:确定平面图形旋转时,必须明确:旋转中心,旋转方向,旋转角.教师提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋转的三要素;②旋转变换同样属于全等变换.出示课件18:例2如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )A.30°B.45°C.90°D.135°\n教师分析:对应点与旋转中心的连线的夹角,就是旋转角,由图可知,OB、OD是对应边,∠BOD是旋转角,所以,旋转角为90°.出示课件19:巩固练习:如图,点P是正方形ABCD内一点,将△ABP绕B点顺时针方向旋转到△CBP′的位置时,其旋转中心是点,旋转角度为.学生思考后口答:B;90°探究二旋转的性质出示课件20:如图,△ABC是如何运动到△A′B′C的位置?学生观察后口答:绕点C逆时针旋转45°.出示课件21:学生观察并根据上图填空:旋转中心是点__________;图中对应点_______________________________________;\n图中对应线段有_____________________________________.每对对应线段的长度.图中旋转角等于________.教师问:观察下图,你能得到什么结论?(出示课件22)学生答:角:∠AOA'=∠BOB'=∠COC'.线:AO=A'O,BO=B'O,CO=C'O.师生共同总结:旋转的性质(出示课件23)1.对应点到旋转中心的距离相等.(OD=OA,OE=OB,OF=OC)2.两组对应点分别与旋转中心的连线所成的角相等.(∠DOA=∠EOB=∠FOC)3.旋转中心是唯一不动的点.(旋转中心O)4.旋转不改变图形的形状和大小.出示课件24:例3如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=________度.\n师生共同解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴∠BE'E=45°,EE′=2在△EE′C中,E′C=1,EC=3,EE′=2,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.出示课件25:巩固练习:如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.求证:△BCF≌△BA1D.教师分析:根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A1=∠A=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D.出示课件26:学生板演:证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,由旋转的性质,可得A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,\n在△BCF与△BA1D中,所以△BCF≌△BA1D(ASA).(三)课堂练习(出示课件27-37)1.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.2.下列现象中属于旋转的有()个①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.A.2B.3C.4D.53.下列说法正确的是()A.旋转改变图形的形状和大小B.平移改变图形的位置C.图形可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到\n4.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5B.1.5C.D.15.△A′OB′是△AOB绕点O按逆时针方向旋转得到的.已知∠AOB=20°,∠A′OB=24°,AB=3,OA=5,则A′B′=,OA′=,旋转角等于.6.△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A.DE=3B.AE=4C.∠CAB是旋转角D.∠CAE是旋转角7.如图(1)中,△ABC和△ADE都是等腰直角三角形,∠ACB和∠D都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合,再将图(1)作为“基本图形”绕着A点经过逆时针旋转得到图(2).两次旋转的角度分别为()\nA.45°,90°B.90°,45°C.60°,30°D.30°,60°8.如图,△ADE可由△CAB旋转而成,点B的对应点是E,点A的对应点是D,在平面直角坐标系中,三点坐标为A(1,0)、B(3,0)、C(1,4).请找出旋转中心P的位置,并写出P的坐标.9.如图所示,AB是长为4的线段,且CD⊥AB于O.你能借助旋转的方法求出图中阴影部分的面积吗?说说你的做法.10.将一个直角三角板绕30°角的顶点顺时针旋转,使一直角边与原斜边在同一条直线上(如图所示).你知道旋转角是多少吗?连结BB′,△ABB′有什么特征吗?\n参考答案:1.解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS).(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°.2.C3.B4.D5.3;5;44°6.D7.A\n8.解:根据旋转中心到对应点距离相等可以知道,旋转中心P既在线段AD的垂直平分线上,又在线段BE的垂直平分线上,它们的交点就是点P.9.解:把所有的阴影部分通过旋转都转移到同一个BC所在的圆中,则有大圆的半径OC=2.因此:S阴影=π×22=π.10.解:150°;△ABB′是等腰三角形.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(23.1第2课时)的相关内容.七、课后作业1.教材59页练习1,2,3.2.配套练习册内容八、板书设计:\n九、教学反思:1.积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,再让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.2.此外,本节课需要注意的地方:(1)教师在提问时需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯.(2)如何将“创设情境”有机地与教学结合起来,更有效地为教学服务.问题情境的创设不能流于形式,而应更多的考虑学生的年龄特征、兴趣爱好,多从学生的角度来设计、创造.