当前位置: 首页 > 初中 > 数学 > 沪科版九下数学24.1第1课时旋转的概念和性质学案

沪科版九下数学24.1第1课时旋转的概念和性质学案

docx 2021-12-15 11:00:06 3页
剩余1页未读,查看更多需下载
24.1旋转第1课时旋转的概念和性质一、学习目标1、掌握旋转的定义以及相关概念2、理解旋转的基本性质3、利用性质解决相关问题。二、重点:旋转相关概念以及性质难点:利用性质解决相关问题。三、学习过程:(一).自学教材并填空:1、把一个平面图形___着平面内某一点O_____一个角度,就叫做图形的旋转,点O叫做_________,转动的角叫做________。因此,旋转的决定因素是_________和_________。(二).自学检测:1.钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了_________度.2.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A、B分别移动______________EDCBAM3.如图:DABC是等边三角形,D是BC上一点,DABD经过旋转后到达DACE的位置。(1)旋转中心是_______(2)旋转了_______度.(3)如果M是AB的中点,那么经过上述旋转后,点M转到了________________.(三)自学教材,总结归纳旋转地性质。①_______________________________________________________②__________________________________________________________③_____________________________________________________________(四)旋转性质的应用1、已知△ABC是直角三角形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC绕点C逆时针方向旋转90°后得到△DEC,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝,DE与AB的位置关系为_________________.2、正方形ABCD中有一点P,把△ABP绕点点B旋转到△CQB,连结PQ,则△PBQ的形状是_____________________________.四、总结应用规律。 五、当堂检测:1.下列现象中属于旋转的有________________①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头的转动;⑤钟摆的运动;⑥荡秋千2.等边三角形至少旋转__________度才能与自身重合。3.图1可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()A.900B.600C.450D.3004.如图2,图形旋转一定角度后能与自身重合,则旋转的角度可能是()A、300B、600C、900D、1200图1图2图3图45.如图3,把△ABC绕着点C顺时针旋转350,得到△A'B'C,若∠BCA'=1000,则∠B/CA的度数是__________。6.如图4,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=______°.7.如图,O是等边△ABC内一点,将△AOB绕B点逆时针旋转,使得B、O两点的对应点分别为C、D,则旋转角为________,图中除△ABC外,还有等边三形是__________.8.如图所示,△ABP是由△ACE绕A点旋转得到的,那么△ABP与△ACE是什么关系?若∠BAP=40°,∠B=30°,∠PAC=20°,求旋转角及∠CAE=____°∠E=____°∠BAE=____°9、△ABC是等腰直角三角形,BC是斜边,P是△ABC内一点,将△ABC绕点A逆时针旋转后于△ACQ重合,如果AP=3,则PQ=__________10、在Rt△ABO中,∠OAB=90°,OA=AB=6,将△ABO绕点O逆时针方向旋转90°得到△OA1B1,(1)则线段OA1的长是__________,∠AOB1=_______°(2)连接AA1,求证四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积? 反思与总结:

相关推荐