湘教版九下数学1.2第2课时二次函数y=ax2(a<0)的图象与性质教案
docx
2021-12-17 08:25:09
3页
第2课时 二次函数y=ax2(a<0)的图象与性质1.会用描点法画二次函数y=ax2(a<0)的图象;(重点)2.掌握形如y=ax2(a<0)的二次函数的图象和性质,并会应用其解决问题.(重点)一、情境导入上节课我们学习了a>0时二次函数y=ax2的图象和性质,那么当a<0时,二次函数y=ax2的图象和性质又会有怎样的变化呢?二、合作探究探究点一:二次函数y=ax2(a<0)的图象【类型一】二次函数y=ax2(a<0)的图象在直角坐标系内,作出函数y=-x2的图象.解析:作函数的图象采用描点法,即“列表、描点、连线”三个步骤.解:列表:x012…y=-x20--2…描点和连线:画出图象在y轴右边的部分,利用对称性,画出图象在y轴左边的部分,如图.方法总结:(1)列表应以0为中心,选取x>0的几个点求出对应的y值;(2)描点要准;(3)画出y轴右边的部分,利用对称性,可画出y轴左边的部分,连线要用平滑的曲线,不能是折线.【类型二】同一坐标系中两种不同图象的判断当ab>0时,抛物线y=ax2与直线y=ax+b在同一直角坐标系中的图象大致是( ),解析:根据a、b的符号来确定.当a>0时,抛物线y=ax2的开口向上.∵ab>0,∴b>0.∴直线y=ax+b过第一、二、三象限;当a<0时,抛物线y=ax2的开口向下.∵ab>0,∴b<0.∴直线y=ax+b过第二、三、四象限.故选D.方法总结:本例综合考查了一次函数y=ax+b和二次函数y=ax2的图象和性质.因为在同一问题中相同字母的取值是相同的,所以应从各选项中两个函数图象所反映的a的符号是否一致入手进行分析.变式训练:见《学练优》本课时练习“课后巩固提升”第3题探究点二:二次函数y=ax2(a<0)的性质【类型一】二次函数y=ax2(a<0)的性质(2015·山西模拟)抛物线y=-4x2不具有的性质是( )A.开口向上B.对称轴是y轴C.在对称轴的左侧,y随x的增大而增大D.最高点是原点解析:此题应从二次函数的基本形式入手,它符合y=ax2的基本形式,根据它的性质,进行解答.因为a=-4<0,所以图象开口向下,顶点坐标为(0,0),对称轴是y轴,最高点是原点.在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.故选A.方法总结:抛物线y=ax2(a<0)的开口向下,顶点坐标为(0,0),对称轴为y轴.当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.当x=0时,图象有最高点,y有最大值0.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次函数y=ax2的开口方向、大小与系数a的关系如图,四个二次函数图象中,分别对应:①y=ax2;②y=bx2;③y=cx2;④y=dx2,则a、b、c、d的大小关系为( )A.a>b>c>dB.a>b>d>cC.b>a>c>dD.b>a>d>c答案:A方法总结:抛物线y=ax2的开口大小由|a|确定,|a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大.变式训练:见《学练优》本课时练习“课堂达标训练”第7题探究点三:二次函数y=ax2的图象与几何图形的综合应用已知二次函数y=ax2(a≠0)与直线y=2x-3相交于点A(1,b),求:(1)a,b的值;(2)函数y=ax2的图象的顶点M的坐标及直线与抛物线的另一个交点B的坐标;,(3)△AMB的面积.解析:直线与二次函数y=ax2的图象交点坐标可利用方程求解,而求△AMB的面积,一般应画出草图进行解答.解:(1)∵点A(1,b)是直线y=2x-3与二次函数y=ax2的图象的交点,∴点A的坐标满足二次函数和直线的关系式,∴∴(2)由(1)知二次函数为y=-x2,顶点M(即坐标原点)的坐标为(0,0).由-x2=2x-3,解得x1=1,x2=-3,∴y1=-1,y2=-9,∴直线与二次函数的另一个交点B的坐标为(-3,-9);(3)如图所示,作AC⊥x轴,BD⊥x轴,垂足分别为C、D,根据点的坐标的意义,可知MD=3,MC=1,CD=1+3=4,BD=9,AC=1,∴S△AMB=S梯形ABDC-S△ACM-S△BDM=×(1+9)×4-×1×1-×3×9=6.方法总结:解答此类题目,最好画出草图,利用数形结合,解答相关问题.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计本节课仍然是从学生画图象着手,结合上节课y=ax2(a>0)的图象和性质,从而得出y=ax2(a<0)的图象和性质,进而得出y=ax2(a≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.