当前位置: 首页 > 初中 > 数学 > 湘教版九下数学1.2第3课时二次函数y=a(x-h)2的图象与性质教案

湘教版九下数学1.2第3课时二次函数y=a(x-h)2的图象与性质教案

docx 2021-12-17 08:25:16 3页
剩余1页未读,查看更多需下载
第3课时 二次函数y=a(x-h)2的图象与性质1.会用描点法画出y=a(x-h)2的图象;2.掌握形如y=a(x-h)2的二次函数图象的性质,并会应用;(重点)3.理解二次函数y=a(x-h)2与y=ax2之间的联系.(难点)一、情境导入涵洞是指在公路工程建设中,为了使公路顺利通过水渠不妨碍交通,修筑于路面以下的排水孔道(过水通道),通过这种结构可以让水从公路的下面流过.如图建立直角坐标系,你能得到函数图象解析式吗?二、合作探究探究点一:二次函数y=a(x-h)2的图象与性质【类型一】y=a(x-h)2的顶点坐标已知抛物线y=a(x-h)2(a≠0)的顶点坐标是(-2,0),且图象经过点(-4,2),求a,h的值.解:∵抛物线y=a(x-h)2(a≠0)的顶点坐标为(-2,0),∴h=-2.又∵抛物线y=a(x+2)2经过点(-4,2),∴a(-4+2)2=2.∴a=.方法总结:二次函数y=a(x-h)2的顶点坐标为(h,0).变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次函数y=a(x-h)2图象的形状顶点为(-2,0),开口方向、形状与函数y=-x2的图象相同的抛物线的解析式为(  )A.y=(x-2)2B.y=(x+2)2C.y=-(x+2)2D.y=-(x-2)2解析:因为抛物线的顶点在x轴上,所以可设该抛物线的解析式为y=a(x-h)2(a≠0),而二次函数y=a(x-h)2(a≠0)与y=-x2的图象相同,所以a=-,而抛物线的顶点为(-2,0),所以h=-2,把a=-,h=-2代入y=a(x-h)2得y=-(x+2)2.故选C.方法总结:决定抛物线形状的是二次项的系数,二次项系数相同的抛物线的形状完全相,同.变式训练:见《学练优》本课时练习“课后巩固提升”第1题【类型三】二次函数y=a(x-h)2的增减性及最值对于二次函数y=9(x-1)2,下列结论正确的是(  )A.y随x的增大而增大B.当x>0时,y随x的增大而增大C.当x=-1时,y有最小值0D.当x>1时,y随x的增大而增大解析:因为a=9>0,所以抛物线开口向上,且h=1,顶点坐标为(1,0),所以当x>1时,y随x的增大而增大.故选D.变式训练:见《学练优》本课时练习“课堂达标训练”第3题探究点二:二次函数y=a(x-h)2图象的平移【类型一】利用平移确定y=a(x-h)2的解析式抛物线y=ax2向右平移3个单位后经过点(-1,4),求a的值和平移后的函数关系式.解析:y=ax2向右平移3个单位后的关系式可表示为y=a(x-3)2,把点(-1,4)的坐标代入即可求得a的值.解:二次函数y=ax2的图象向右平移3个单位后的二次函数关系式可表示为y=a(x-3)2,把x=-1,y=4代入,得4=a(-1-3)2,a=,∴平移后二次函数关系式为y=(x-3)2.方法总结:根据抛物线左右平移的规律,向右平移3个单位后,a不变,括号内应“减去3”;若向左平移3个单位,括号内应“加上3”,即“左加右减”.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】确定y=a(x-h)2与y=ax2的关系向左或向右平移函数y=-x2的图象,能使得到的新的图象过点(-9,-8)吗?若能,请求出平移的方向和距离;若不能,请说明理由.解:能,理由如下:设平移后的函数为y=-(x-h)2,将x=-9,y=-8代入得-8=-(-9-h)2,所以h=-5或h=-13,所以平移后的函数为y=-(x+5)2或y=-(x+13)2.即抛物线的顶点坐标为(-5,0)或(-13,0),所以应向左平移5或13个单位.变式训练:见《学练优》本课时练习“课后巩固提升”第6题探究点三:二次函数y=a(x-h)2与几何图形的综合把函数y=x2的图象向右平移4个单位后,其顶点为C,并与直线y=x分别相交于A、B两点(点A在点B的左边),求△ABC的面积.解析:利用二次函数平移规律先确定平移后的抛物线解析式,确定C点坐标,再解由所得到的二次函数解析式与y=x组成的方程组,确定A、B两点坐标,最后求△ABC的面积.,解:平移后的函数为y=(x-4)2,顶点C的坐标为(4,0),OC=4.解方程组得或∵点A在点B的左边,∴A(2,2),B(8,8),∴S△ABC=S△OBC-S△OAC=×4×8-×4×2=12.方法总结:两个函数交点的横、纵坐标与两个解析式组成的方程组的解是一致的.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左、向右平移,从中领会数形结合的数学思想.

相关推荐