湘教版九下数学1.5第1课时抛物线形二次函数课件
ppt
2021-12-17 09:57:18
24页
1.5二次函数的应用第1章二次函数导入新课讲授新课当堂练习课堂小结第1课时抛物线形二次函数,学习目标1.掌握二次函数模型的建立,会把实际问题转化为二次函数问题.(重点)2.利用二次函数解决拱桥及运动中的有关问题.(重、难点)3.能运用二次函数的图象与性质进行决策.,导入新课问题引入白娘子初见许仙是在西湖断桥,现在有一座类似的拱桥,它的纵截面是抛物线的一部分,跨度是4.9m,当水面宽是4m时,拱顶离水面2m.现在想了解水面宽度变化时,拱顶离水面的高度怎样变化.你能想出办法来吗?,讲授新课拱桥问题一建立函数模型这是什么样的函数呢?拱桥的纵截面是抛物线,所以应当是个二次函数你能想出办法来吗?探究,怎样建立直角坐标系比较简单呢?以拱顶为原点,抛物线的对称轴为y轴,建立直角坐标系,如图.从图看出,什么形式的二次函数,它的图象是这条抛物线呢?由于顶点坐标系是(0.0),因此这个二次函数的形式为xOy-2-421-2-1A,xOy-2-421-2-1A如何确定a是多少?已知水面宽4m时,拱顶离水面高2米,因此点A(2,-2)在抛物线上,由此得出因此,,其中|x|是水面宽度的一半,y是拱顶离水面高度的相反数,这样我们就可以了解到水面宽度变化时,拱顶离水面高度怎样变化.解得,由于拱桥的跨度为4.9m,因此自变量x的取值范围是:水面宽3m时从而因此拱顶离水面高1.125m现在你能求出水面宽3m时,拱顶离水面高多少吗?,知识要点建立二次函数模型解决实际问题的基本步骤是什么?实际问题建立二次函数模型利用二次函数的图象和性质求解实际问题的解,例1某公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.如果不计其它因素,那么水池的半径至少要多少才能使喷出的水流不致落到池外?典例精析,解:建立如图所示的坐标系,根据题意得,A点坐标为(0,1.25),顶点B坐标为(1,2.25).数学化●B(1,2.25)(0,1.25)●C●DoAxy,根据对称性,如果不计其它因素,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.当y=0时,可求得点C的坐标为(2.5,0);同理,点D的坐标为(-2.5,0).设抛物线为y=a(x+h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25.●B(1,2.25)(0,1.25)●DoAxy●C,运动中抛物线及其他实物抛物线二例2如图,一名运动员在距离篮球圈中心4m(水平距离)远处跳起投篮,篮球准确落入篮圈,已知篮球运行的路线为抛物线,当篮球运行水平距离为2.5m时,篮球达到最大高度,且最大高度为3.5m,如果篮圈中心距离地面3.05m,那么篮球在该运动员出手时的高度是多少?典例精析,解:如图,建立直角坐标系.则点A的坐标是(1.5,3.05),篮球在最大高度时的位置为B(0,3.5).以点C表示运动员投篮球的出手处.xyO,解得a=-0.2,k=3.5,设以y轴为对称轴的抛物线的解析式为y=a(x-0)2+k,即y=ax2+k.而点A,B在这条抛物线上,所以有所以该抛物线的表达式为y=-0.2x2+3.5.当x=-2.5时,y=2.25.故该运动员出手时的高度为2.25m.2.25a+k=3.05,k=3.5,xyO,1.足球被从地面上踢起,它距地面的高度h(m)可用公式h=-4.9t2+19.6t来表示,其中t(s)表示足球被踢出后经过的时间,则球在s后落地.42.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式为,那么铅球运动过程中最高点离地面的距离为米.xyO2当堂练习,3.赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO是2m时,这时水面宽度AB为( )A.-10mB.mC.mD.mD,4.某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.(1)在如图所示的平面直角坐标系中,求抛物线的表达式.,解:(1)设抛物线的表达式为y=ax2.∵点B(6,﹣5.6)在抛物线的图象上,∴﹣5.6=36a,∴抛物线的表达式为,(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?,(2)设窗户上边所在直线交抛物线于C,D两点,D点坐标为(k,t),已知窗户高1.6m,∴t=﹣5.6﹣(﹣1.6)=﹣4∴,解得k=,即k1≈5.07,k2≈﹣5.07∴CD=5.07×2≈10.14(m)设最多可安装n扇窗户,∴1.5n+0.8(n﹣1)+0.8×2≤10.14,解得n≤4.06.则最大的正整数为4.答:最多可安装4扇窗户.,5悬索桥两端主塔塔顶之间的主悬钢索,其形状可近似地看作抛物线,水平桥面与主悬钢索之间用垂直钢索连接.已知两端主塔之间的水平距离为900m,两主塔塔顶距桥面的高度为81.5m,主悬钢索最低点离桥面的高度为0.5m.(1)若以桥面所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,如图所示,求这条抛物线对应的函数表达式;yxO-450450,解:根据题意,得抛物线的顶点坐标为(0,0.5),对称轴为y轴,设抛物线的函数表达式为y=ax2+0.5.抛物线经过点(450,81.5),代入上式,得81.5=a•4502+0.5.解得故所求表达式为(1)若以桥面所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,如图所示,求这条抛物线对应的函数表达式;yxO-450450,(2)计算距离桥两端主塔分别为100m,50m处垂直钢索的长.yxO-450450解:当x=450-100=350(m)时,得当x=450-50=400(m)时,得,课堂小结实际问题数学模型转化回归(二次函数的图像和性质)拱桥问题运动中的抛物线问题(实物中的抛物线形问题)转化的关键建立恰当的直角坐标系能够将实际距离准确的转化为点的坐标;选择运算简便的方法.