当前位置: 首页 > 初中 > 数学 > 人教版七年级上册数学:2.1.2《多项式》课时练习(含答案

人教版七年级上册数学:2.1.2《多项式》课时练习(含答案

doc 2021-08-30 10:14:23 4页
剩余2页未读,查看更多需下载
人教版七年级上册数学:2.1.2《多项式》课时练习(含答案)第2课时 多项式能力提升1.下列说法中正确的是(  )A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数(  )A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是(  )A.a10+b19B.a10-b19C.a10-b17D.a10-b21★4.若xn-2+x3+1是五次多项式,则n的值是(  )A.3B.5C.7D.05.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有     ,多项式有     .(填序号) 6.一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为     . 7.多项式的二次项系数是     . ,8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的话还没有说完,甲同学抢着说:“这个多项式最多只有六项.”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式.”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?9.如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值.★10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?创新应用★11.如图所示,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:,(2)通过猜想,写出与第n个图形相对应的等式.能力提升1.C2.D 多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B 根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,所以第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,所以第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,所以第10个式子应为a10-b19.4.C n-2=5,n=7.5.①③④ ②⑤⑥ 6.2a2-3a-37.=-,二次项为,所以二次项系数为.8.解:丁同学说得对,甲、乙、丙三位同学说得都不对.理由:因为这个多项式是五次多项式,所以它的最高次项的次数是5,又因为它是多项式,也就是几个单项式的和.所以这个多项式至少有两项,因此,丁同学说得对.因为老师没有限制多项式的项数和可以包含的字母,因此它的项数不确定,可能只有两项,如x5+1,也可能是六项,如x5+x4+x3+x2+x+1,还可能有更多的项,如x5+y4+z5+a3+a2+a+1等,因此甲和丙两位同学说得都不对;另外,这个多项式的最高次项的次数是5,但最高次项不一定只有一项,如x5+y5+x4中就有两项的次数是5,因此,乙同学说得也不对.9.分析:题中多项式是关于x的二次二项式,所以次数最高项的次数为2,系数不为0,另外,-(n-1)x的系数为0.解:由题知m=2,且-(n-1)=0,即m=2,n=1.,10.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19得399.创新应用11.解:(1)④4×3+1=4×4-3⑤4×4+1=4×5-3(2)4(n-1)+1=4n-3.

相关推荐