第三十章二次函数30.5二次函数与一元二次方程的关系课件
ppt
2022-01-01 20:00:05
25页
30.5二次函数与一元二次方程的关系导入新课讲授新课当堂练习课堂小结第三十章二次函数
学习目标1.通过探索,理解二次函数与一元二次方程之间的联系.(难点)2.能运用二次函数及其图像、性质确定方程的解.(重点)3.了解用图像法求一元二次方程的近似根.
(1)一次函数y=x+2的图象与x轴的交点为(,),一元一次方程x+2=0的根为________.(2)一次函数y=-3x+6的图象与x轴的交点为(,),一元一次方程-3x+6=0的根为_______.问题一次函数y=kx+b的图象与x轴的交点与一元一次方程kx+b=0的根有什么关系?一次函数y=kx+b的图象与x轴的交点的横坐标就是一元一次方程kx+b=0的根.导入新课复习引入-20-2202那么二次函数与一元二次方程有什么关系呢,接下来我们一起探讨.
讲授新课一元二次方程的根与二次函数图象的关系一合作探究问题1:画出二次函数的图象,你能从图象中看出它与x轴的交点吗?(-1,0)与(3,0)(-1,0)(3,0)
问题2:二次函数y=x2-2x-3与一元二次方程x2-2x-3=0又怎样的关系?当x=-1时,y=0,即x2-2x-3=0,也就是说,x=-1是一元二次方程x2-2x-3=0的一个根;同理,当x=3时,y=0,即x2-2x-3=0,也就是说,x=3是一元二次方程x2-2x-3=0的一个根;
知识要点一般地,如果二次函数y=ax2+bx+c的图象与x轴有两个交点(x1,0)、(x2,0)那么一元二次方程ax2+bx+c=0有两个不相等的实数根x=x1、x=x2.
1xyOy=x2-6x+9y=x2-x+1y=x2+x-2观察图象,完成下表:抛物线与x轴公共点个数公共点横坐标相应的一元二次方程的根y=x2-x+1y=x2-6x+9y=x2+x-20个1个2个x2-x+1=0无解0x2-6x+9=0,x1=x2=3-2,1x2+x-2=0,x1=-2,x2=1
知识要点二次函数y=ax2+bx+c的图象与x轴交点一元二次方程ax2+bx+c=0的根b2-4ac有两个交点有两个不相等的实数根b2-4ac>0有一个交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<0二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系
例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有两个交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.(1)证明:∵m≠0,∴Δ=(m+2)2-4m×2=m2+4m+4-8m=(m-2)2.∵(m-2)2≥0,∴Δ≥0,∴此抛物线与x轴总有两个交点;
(2)解:令y=0,则(x-1)(mx-2)=0,所以x-1=0或mx-2=0,解得x1=1,x2=.当m为正整数1或2时,x2为整数,即抛物线与x轴总有两个交点,且它们的横坐标都是整数.所以正整数m的值为1或2.例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有两个交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.
变式:已知:抛物线y=x2+ax+a-2.(1)求证:不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)设这个二次函数的图象与x轴相交于A(x1,0),B(x2,0),且x1、x2的平方和为3,求a的值.(1)证明:∵Δ=a2-4(a-2)=(a-2)2+4>0,∴不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)解:∵x1+x2=-a,x1·x2=a-2,∴x1(2)+x2(2)=(x1+x2)2-2x1·x2=a2-2a+4=3,∴a=1.
例2:求一元二次方程的根的近似值(精确到0.1).分析:一元二次方程x²-2x-1=0的根就是抛物线y=x²-2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.利用二次函数求一元二次方程的近似解二
解:画出函数y=x²-2x-1的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.
先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:x…-0.4-0.5…y…-0.040.25…观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.同理可得另一近似值为x2≈2.4.
一元二次方程的图象解法利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.(1)用描点法作二次函数y=2x2+x-15的图象;(2)观察估计二次函数y=2x2+x-15的图象与x轴的交点的横坐标;由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);(3)确定方程2x2+x-15=0的解;由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.方法归纳
例3:已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的近似根为()A.x1≈-2.1,x2≈0.1B.x1≈-2.5,x2≈0.5C.x1≈-2.9,x2≈0.9D.x1≈-3,x2≈1解析:由图象可得二次函数y=ax2+bx+c图象的对称轴为x=-1,而对称轴右侧图象与x轴交点到原点的距离约为0.5,∴x2≈0.5;又∵对称轴为x=-1,则=-1,∴x1=2×(-1)-0.5=-2.5.故x1≈-2.5,x2≈0.5.故选B.B
解答本题首先需要根据图象估计出一个根,再根据对称性计算出另一个根,估计值的精确程度,直接关系到计算的准确性,故估计尽量要准确.方法总结
利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).xyO-222464-48-2-4y=x2-2x-2解:作y=x2-2x-2的图象(如右图所示),它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.练一练
一元二次方程ax2+bx+c=m的根就是二次函数y=ax2+bx+c与直线y=m(m是实数)图象交点的横坐标.既可以用求根公式求二次方程的根,也可以通过画二次函数图象来估计一元二次方程的根.说一说
判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09C1.根据下列表格的对应值:当堂练习
2.若二次函数y=-x2+2x+k的部分图像如图所示,且关于x的一元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2=;-1yOx133.一元二次方程3x2+x-10=0的两个根是x1=-2,x2=,那么二次函数y=3x2+x-10与x轴的交点坐标是.(-2,0)(,0)
4.若一元二次方程无实根,则抛物线的图象位于()A.x轴上方B.第一、二、三象限C.x轴下方D.第二、三、四象限A
5.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0.∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
能力提升已知二次函数的图象,利用图象回答问题:(1)方程的解是什么?(2)x取什么值时,y>0?(3)x取什么值时,y<0?xyO248解:(1)x1=2,x2=4;(2)x<2或x>4;(3)2<x<4.
课堂小结二次函数与一元二次方程二次函数与一元二次方程的关系y=ax2+bx+c(a≠0)当y取定值时就成了一元二次方程;ax2+bx+c=0(a≠0),右边换成y时就成了二次函数.二次函数与一元二次方程根的情况二次函数与x轴的交点个数判别式的符号一元二次方程根的情况Δ