人教版七年级上册数学教案:2.2整式的加减(四)
docx
2021-08-30 17:07:42
2页
人教版七年级上册数学教案:2.2整式的加减(四)2.2.4整式的加减(四)教学内容:课本没有“添括号”内容,整式的加减过程中要用到。教学目标和要求:1.使学生初步掌握添括号法则。2.会运用添括号法则进行多项式变项。3.理解“去括号”与“添括号”的辩证关系。教学重点和难点:重点:添括号法则;法则的应用。难点:添上“―”号和括号,括到括号里的各项全变号。教学方法:分层次教学,讲授、练习相结合。教学过程:一、复习引入:练习:(1)(2x―3y)+(5x+4y);(2)(8a―7b)―(4a―5b);(3)a―(2a+b)+2(a―2b);(4)3(5x+4)―(3x―5);(5)(8x―3y)―(4x+3y―z)+2z;(6)―5x2+(5x―8x2)―(―12x2+4x)+;(7)2―(1+x)+(1+x+x2―x2);(8)3a2+a2―(2a2―2a)+(3a―a2);(9)2a―3b+[4a―(3a―b)];(10)3b―2c―[―4a+(c+3b)]+c。二、讲授新课:1.添括号的法则:①观察:分别把前面去括号的(1)、(2)两个等式中等号的两边对调,并观察对调后两个等式中括号和各项符号的变化,你能得出什么结论?随着括号的添加,括号内各项的符号有什么变化规律?②通过观察与分析,可以得到添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“-”号,括到括号里的各项都改变符号。2.例题:例1:做一做:在括号内填入适当的项:(1)x2―x+1=x2―(__________);(2)2x2―3x―1=2x2+(__________);(3)(a-b)―(c―d)=a-(________________)。(4)(a+b―c)(a―b+c)=[a+()][a―()]例2:用简便方法计算:(1)214a+47a+53a;(2)214a-39a-61a.解:(1)214a+47a+53a=214a+(47a+53a)=214a+100a=314a。(2)214a-39a-61a=214a-(39a+61a)=214a-100a=114a。,例3:按要求,将多项式3a―2b+c添上括号:(1)把它放在前面带有“+”号的括号里;(2)把它放在前面带有“―”号的括号里此题是添括号法则的直接应用,为了更加明确起见,在解题时,先写出3a―2b+c=+()=―()的形式,再让学生往里填空,特别注意,添“―”号和括号,括到括号里的各项全变号。解:3a―2b+c=+(3a―2b+c)=―(―3a+2b―c)紧接着提问学生:如何检查添括号对不对呢?引导学生观察、分析,直至说出可有两种方法:一是直接利用添括号法则检查,一是从结果出发,利用去括号法则检查肯定学生的回答, 并进一步指出所谓用去括号法则检查添括号,正如同用加法检验减法,用乘法检验除法一样例4:按下列要求,将多项式x3―5x2―4x+9的后两项用()括起来:(1)括号前面带有“+”号;(2)括号前面带有“―”号解:(1)x3―5x2―4x+9=x3―5x2+(―4x+9);(2)x3―5x2―4x+9=x3―5x2―(4x―9)。说明:①解此题时,首先要让学生确认x3―5x2―4x+9的后两项是什么——是―4x、+9,要特别注意每一项都包括前面的符号。②再次强调添的是什么——是()及它前面的“+”或“―”。例5:按要求将2x2+3x―6:(1)写成一个单项式与一个二项式的和;(2)写成一个单项式与一个二项式的差。此题(1)、(2)小题的答案都不止一种形式,因此要让学先讨论1分钟再举手发言。通过此题可渗透一题多解的立意。解:(1)2x2+3x―6=2x2+(3x―6)=3x+(2x2―6)=―6+(2x2+3x);(2)2x2+3x―6=2x2―(―3x+6)=3x―(―2x2+6)=―6―(―2x2―3x)。三、课堂小结:1、这两节课我们学习了去括号法则和添括号法则,这两个法则在整式变形中经常用到,而利用它们进行整式变形的前提是原来整式的值不变。2、去、添括号时,一定要注意括号前的符号,这里括号里各项变不变号的依据。法则顺口溜:添括号,看符号:是“+”号,不变号;是“―”号,全变号。课后反思:——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————