1.3 同底数幂的除法第1课时同底数幂的除法教案
docx
2022-02-12 16:00:08
3页
1.3 同底数幂的除法第1课时 同底数幂的除法1.理解并掌握同底数幂的除法运算并能运用其解决实际问题;(重点)2.理解并掌握零次幂和负指数幂的运算性质.(难点)一、情境导入一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?二、合作探究探究点一:同底数幂的除法【类型一】直接运用同底数幂的除法进行运算计算:(1)(-xy)13÷(-xy)8;(2)(x-2y)3÷(2y-x)2;(3)(a2+1)7÷(a2+1)4÷(a2+1)2.解析:利用同底数幂的除法法则即可进行计算,其中(1)应把(-xy)看作一个整体;(2)把(x-2y)看作一个整体,2y-x=-(x-2y);(3)把(a2+1)看作一个整体.解:(1)(-xy)13÷(-xy)8=(-xy)13-8=(-xy)5=-x5y5;(2)(x-2y)3÷(2y-x)2=(x-2y)3÷(x-2y)2=x-2y;(3)(a2+1)7÷(a2+1)4÷(a2+1)2=(a2+1)7-4-2=(a2+1)1=a2+1.方法总结:计算同底数幂的除法时,先判断底数是否相同或可变形为相同,再根据法则计算.【类型二】逆用同底数幂的除法进行计算已知am=4,an=2,a=3,求am-n-1的值.解析:先逆用同底数幂的除法,对am-n-1进行变形,再代入数值进行计算.解:∵am=4,an=2,a=3,∴am-n-1=am÷an÷a=4÷2÷3=.方法总结:解此题的关键是逆用同底数幂的除法得出am-n-1=am÷an÷a.声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍?(2)喷气式飞机声音的强度是汽车声音的强度的多少倍?解析:(1)用汽车声音的强度除以人声音的强度,再利用“同底数幂相除,底数不变,指数相减”计算;(2)将喷气式飞机声音的分贝数转化为声音的强度,再除以汽车声音的强度即可得到答案.
解:(1)因为1010÷105=1010-5=105,所以汽车声音的强度是人声音的强度的105倍;(2)因为人的声音是50分贝,其声音的强度是105,汽车的声音是100分贝,其声音的强度为1010,所以喷气式飞机的声音是150分贝,其声音的强度为1015,所以1015÷1010=1015-10=105,所以喷气式飞机声音的强度是汽车声音的强度的105倍.方法总结:本题主要考查同底数幂除法的实际应用,熟练掌握其运算性质是解题的关键.探究点二:零指数幂和负整数指数幂【类型一】零指数幂若(x-6)0=1成立,则x的取值范围是( )A.x≥6B.x≤6C.x≠6D.x=6解析:∵(x-6)0=1成立,∴x-6≠0,解得x≠6.故选C.方法总结:本题考查的是0指数幂成立的条件,非0的数的0次幂等于1,注意0指数幂的底数不能为0.【类型二】比较数的大小若a=(-)-2,b=(-1)-1,c=(-)0,则a、b、c的大小关系是( )A.a>b=cB.a>c>bC.c>a>bD.b>c>a解析:∵a=(-)-2=(-)2=,b=(-1)-1=-1,c=(-)0=1,∴a>c>b.故选B.方法总结:本题的关键是熟悉运算法则,利用计算结果比较大小.当底数是分数,指数为负整数时,只要把底数的分子、分母颠倒,负指数就可变为正指数.【类型三】零指数幂与负整数指数幂中底数的取值范围若(x-3)0-2(3x-6)-2有意义,则x的取值范围是( )A.x>3B.x≠3且x≠2C.x≠3或x≠2D.x<2解析:根据题意,若(x-3)0有意义,则x-3≠0,即x≠3.(3x-6)-2有意义,则3x-6≠0,即x≠2,所以x≠3且x≠2.故选B.方法总结:任意非0的数的0次幂为1,底数不能为0,负整数指数幂的底数不能为0.【类型四】含整数指数幂、零指数幂与绝对值的混合运算计算:-22+(-)-2+(2015-π)0-|2-|.解析:分别根据有理数的乘方、零指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-)-2+(2015-π)0-|2-|=-4+4+1-2+=-1.方法总结:熟练掌握有理数的乘方、零指数幂、负整数指数幂及绝对值的性质是解答此题的关键.三、板书设计1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.2.零次幂:任何一个不等于零的数的零次幂都等于1.即a0=1(a≠0).
3.负整数次幂:任何一个不等于零的数的-p(p是正整数)次幂,等于这个数p次幂的倒数.即a-p=(a≠0,p是正整数).从计算具体问题中的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.教学时要多举几个例子,让学生从中总结出规律,体验自主探究的乐趣和数学学习的魅力,为以后的学习奠定基础。