当前位置: 首页 > 试卷 > 高中 > 数学 > 黑龙江省哈尔滨市呼兰区第一中学2022届高三数学上学期第三次12月月考试题文

黑龙江省哈尔滨市呼兰区第一中学2022届高三数学上学期第三次12月月考试题文

docx 2022-08-25 21:32:26 8页
剩余6页未读,查看更多需下载
呼兰一中2022—2022学年度上学期第三次月考高三文科数学试卷一.选择题(每小题5分)1.一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是(  )A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,62.双曲线的渐近线方程是(  )A.y=±xB.C.D.3.甲、乙两名同学八次数学测试成绩如茎叶图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为(  )A.85,86B.85,85C.86,85D.86,864.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160),若第16组得到的号码为126,则第1组中用抽签的方法确定的号码是(  )A.8B.6C.4D.25.如果执行如图的程序框图,若输入n=6,m=4,那么输出的p等于(  )8\nA.720B.360C.240D.1206.已知x,y的取值如下表所示:x234y645如果y与x呈线性相关,且线性回归方程为,则b=(  )A.B.C.D.7.把红、黑、白、蓝张纸牌随机地分给甲、乙、丙、丁个人,每个人分得张,事件“甲分得红牌”与“乙分得红牌”是(  )A.对立事件B.不可能事件C.互斥但不对立事件D.以上均不对8.实数mn<0是方程=1表示实轴在x轴上的双曲线的(  )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设拋物线C:x2=4y的焦点为F,经过点P(l,5)的直线与抛物线相交于A、B两点,且点P恰为AB的中点,则丨AF|+|BF|=(  )A.12B.8C.4D.1010.双曲线tx2﹣y2﹣1=0的一条渐近线与直线x﹣2y+1=0平行,则双曲线的离心率为(  )A.B.C.D.8\n11.在平面直角坐标系xOy中,已知△ABC顶点A(﹣4,0)和C(4,0),顶点B在椭圆上,则=(  )A.B.C.D.12..已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为(  )A.B.3C.D.二.填空题(每小题5分)13.在区间上随机地取一个数,则事件“”发生的概率为 .14.抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于  .15.如图,F1和F2分别是双曲线的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率为  .16.曲线y=xex﹣1在点(1,1)处切线的斜率等于  三。解答题(要求有必要的解题步骤)17.(10分)(1)求与椭圆有共同焦点且过点的双曲线的标准方程;8\n(2)已知抛物线的焦点在x轴上,抛物线上的点M(﹣3,m)到焦点的距离等于5,求抛物线的标准方程和m的值.18.(12分)命题p:直线y=kx+3与圆x2+y2=1相交于A,B两点;命题q:曲线﹣=1表示焦点在y轴上的双曲线,若p∧q为真命题,求实数k的取值范围.19.(12分)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.20.(12分)已知函数f(x)=x++lnx,a∈R.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)若f(x)在区间(1,2)上单调递增,求a的取值范围;21(12分)已知函数f(x)=x3+ax2+bx+a2(a>0)在x=1处有极值10.(1)求a、b的值;(2)求f(x)的单调区间;8\n(3)求f(x)在[0,4]上的最大值与最小值.22.已知椭圆=1(a>b>0)的离心率,焦距是.(1)求椭圆的方程;(2)若直线y=kx+2(k≠0)与椭圆交于C、D两点,,求k的值.8\n文科数学答案一选择题DCBBBACBABDA二填空题(13)(14)(15)(16)217.【解答】解:(1)椭圆的焦点为(2,0),(﹣2,0),设双曲线的标准方程为:=1(a,b>0),则a2+b2=4,=1,解得a2=3,b2=1,∴所求双曲线的标准方程为.(2)设抛物线方程为y2=﹣2px(p>0),则焦点,准线方程为,根据抛物线的定义,点M到焦点的距离等于5,也就是点M到准线的距离为5,则,∴p=4,因此,抛物线方程为y2=﹣8x,又点M(﹣3,m)在抛物线上,于是m2=24,∴18【解答】解:∵命题p:直线y=kx+3与圆x2+y2=1相交于A,B两点,∴圆心到直线的距离,∴∵命题q:曲线﹣=1表示焦在y轴上的双曲线∴,解得k<0,∵p∧q为真命题,∴p,q均为真命题,∴解得k<﹣219【解答】解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为20×0.04×5=4(人),参加社区服务在时间段[95,100]的学生人数为20×0.02×5=2(人).8\n所以参加社区服务时间不少于90小时的学生人数为4+2=6(人).…(Ⅱ)设所选学生的服务时间在同一时间段内为事件A.由(Ⅰ)可知,参加社区服务在时间段[90,95)的学生有4人,记为a,b,c,d;参加社区服务在时间段[95,100]的学生有2人,记为A,B.从这6人中任意选取2人有ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15种情况.事件A包括ab,ac,ad,bc,bd,cd,AB共7种情况.所以所选学生的服务时间在同一时间段内的概率.…20.【解答】解:(Ⅰ)函数f(x)=x++lnx(x>0),f′(x)=1﹣+=,f(x)在x=1处取得极小值,即有f′(1)=0,解得a=2,经检验,a=2时,f(x)在x=1处取得极小值.则有a=2;(Ⅱ)f′(x)=1﹣+=,x>0,f(x)在区间(1,2)上单调递增,即为f′(x)≥0在区间(1,2)上恒成立,即a≤x2+x在区间(1,2)上恒成立,由x2+x∈(2,6),则a≤2;21.【解答】解:(1)由f′(1)=3+2a+b=0,f(1)=1+a+b+a2=10,得a=4,或a=﹣3∵a>0,∴a=4,b=﹣11(2)f(x)=x3+4x2﹣11x+16,f'(x)=3x2+8x﹣11,由f′(x)=0得所以令f′(x)>0得;令所以f(x)在上单调递增,上单调递减.(3)由(2)知:f(x)在(0,1)上单调递减,(1,4)上单调递增,8\n又因为f(0)=16,f(1)=10,f(4)=100,所以f(x)的最大值为100,最小值为10.22.【解答】解:(1)由题意知,故c2=2,又∵,∴a2=3,b2=1,∴椭圆方程为.(2)设C(x1,y1),D(x2,y2),将y=kx+2代入,化简整理可得,(1+3k2)x2+12kx+9=0,故△=(12k)2﹣36(1+3k2)>0,故k2≥1;由韦达定理得,,故,而y1﹣y2=k(x1﹣x2),故;而代入上式,整理得7k4﹣12k2﹣27=0,即(7k2+9)(k2﹣3)=0,解得k2=3,故.8

相关推荐