高二理科数学下册期末考试4
docx
2022-08-25 21:31:37
7页
高二理科数学下册期末考试高二数学试题(理科)(总分:150分考试时间:120分钟)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.在的展开式中,各项系数和为()A.1B.2C.–1D.–1或12.复数数列满足,(,i为虚数单位),则()A.0B.iC.D.3.某班从6名学生中选出4人分别参加数、理、化、生四科竞赛且每科只有1人,其中甲、乙两人不能参加生物竞赛.则不同的选派方法共有()A.96种B.180种C.240种D.280种A1B1C1D1DCBA4.某单位有职工160人,其中有业务人员120人,管理人员24人,后勤服务人员16人.为了解职工的某种情况,要从中抽取一个容量为20的样本,将这次调查记做①;从某中学高二年级的18名体育特长生中选出3人调查学习负担情况,将这次调查记做②.那么完成上述二项调查应采用的抽样方法是()A.①用随机抽样法,②用系统抽样法B.①用分层抽样法,②用随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②用系统抽样法5.正方体中,A1B与D1B1所成的角是()A.B.C.D.以上都不对6.某校决定面向社会招聘3名微机专业技术人才.两个好朋友一起去应聘.该校主管人事的领导通知他们面试时间的时候透露:“你们二人同时被招聘的概率为”.据此推断面试总人数为()A.70个B.21个C.42个D.35个7.已知A,B是球O上两点,若∠AOB=,且A、B的球面距离为,则球的体积为()A.B.C.D.8.袋中编号为1,2,3,4,5的五只小球,从中任取3只球,以-7-/7\n表示取出的球的最大号码,则的值是()A.5B.4.75C.4.5D.41.设连续掷两次骰子得到的点数分别为m、n,则直线与圆相离的概率是()A.B.C.D.2.正方体ABCD—A1B1C1D1的棱长为1,点M在棱AB上,且点A与点M不重合,点P是平面ABCD内的动点,且点P到A1D1的距离与点P到点M的距离的平方差为1,则点P的轨迹是()A.圆B.双曲线C.直线D.抛物线二、填空题:本大题共5小题,每小题5分,共25分.3.设~N(0,1),则_________________.4.6人排成一排照像,其中甲、乙两人中间恰有一人的排法总数是.5.的展开式中含的系数为_________________.1223434774511141156.如右图,它满足①第n行首尾两数均为n②表中的递推关系如杨辉三角,则第n行(n≥2)的第二个数是.7.如图,在多面体中,EF=2,且EF∥面ABCD,其余棱长均为1,则与平面所成的角的正切值为_______________.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.8.(13分)某学生骑自行车上学途中要经过4个交叉路口,在各交叉路口遇到红灯的概率是(各交叉口遇到红灯的事件相互独立).(1)求这名学生在上学途中3次遇到红灯的概率;(2)求这名学生在途中最多遇到1次红灯的概率.-7-/7\n1.(13分)数学研究性学习小组共13个人,其中男同学8人,女同学5人.(1)从这13人中选出正、副组长各1人,有多少种选法?(2)从这13人中选出3人准备作报告,在选出的3个人里至少要有一名女同学,一共有多少种不同的选法?2.(13分)在二项式的展开式中,各项的系数和比各项的二项式系数和大992,试求该二项式展开式中系数最大的项.3.(12分)如图,在直三棱柱ABC—A1B1C1中,,AC=BC=CC1=2.(1)求证:AB1BC1;(2)求点B到平面AB1C1的距离;(3)求二面角C1—AB1—A1的大小.4.(12分)某社区文化站举行一次象棋比赛,经优胜劣汰,最后由甲、乙二人决赛.根据他们过去比赛的情况统计知,单局比赛甲胜乙的概率为0.6.本次比赛采用五局三胜制,即先胜三局者获胜.设各局比赛相互间没有影响.求:(1)前三局甲领先的概率;(2)本场比赛乙以3∶2取胜的概率;(3)令为本场比赛的局数,求的分布列和数学期望.5.(12分)等比数列{an}的前n项和为Sn,已知对任意的,点(n,Sn)均在函数-7-/7\n,b、r均为常数)的图象上.(1)求r的值;(2)当b=2时,记.证明:对任意,不等式成立.(命题人:郑莹莹审题人:周先凤)-7-/7\n西南师大附中2022—2022学年度下期期末考试高二数学试题参考答案(理科)一、选择题:本大题共10小题,每题5分,共50分.1.D2.C3.C4.B5.A6.B7.B8.C9.C10.D二、填空题:本大题共5小题,每题5分,共25分.11.12.19213.2514.15.三、解答题:本题共6小题,共75分.16.解:(1)6分(2)13分17.解:(1)6分(2)13分18.解:令x=1,得系数和为2分二项式系数和为4分由题∴n=55分设第r+1项即最大∴10分∴∴r=412分∴最大项13分19.(1)证明:∵,∴∴3分(2)解:由体积法4分,,6分-7-/7\n∴即B到距离为7分DE(3)过C1作C1D⊥A1B1于D,则C1D⊥面A1B,过D作DE⊥AB1于E,连结C1E,则∠C1ED即为所求二面角的平面角9分易知10分在Rt△C1DE中∴故所求二面角平面角为6012分20.(1)设“前三局甲胜三局”为事件A,“甲胜两局”为事件B,“前三局甲领先”为事件C,则C=A+B1分2分3分(2)设“乙以3∶2取胜”为事件D,若乙以3∶2取胜,则前四局甲、乙双方以2∶2战平且乙必须在第五局胜∴6分(3)9分∴分布列345P0.280.37440.345611分∴12分21.(1)解:由题意,,当时,,所以,由于b>0且所以时,{an}是以b为公比的等比数列,2分又,解得r=–14分-7-/7\n(2)证法一:由(1)知,因此,所以所证不等式为5分①当n=1时,左式,左式>右式,所以结论成立.②假设n=k时结论成立,即,7分则当n=k+1时,,要证当n=k+1时结论成立,只需证,即证,8分由均值不等式成立,11分故成立,所以,当n=k+1时,结论成立.由①②可知,时,不等式成立.12分证法二:由(1)知:,因此,所证不等式为5分事实上,8分11分∴对一切所证不等式成立.…………………………………………12分-7-/7