湘教版七下数学1.3 第2课时 解决所列方程组中x、y系数不为1形式的实际问题教案
docx
2022-02-16 09:00:22
3页
第2课时 解决所列方程组中x,y系数不都为1形式的实际问题 1.掌握列二元一次方程组解决较复杂问题的应用题;(重点、难点)2.通过列二元一次方程组解决实际问题,培养学生的数学运用能力以及分析问题和解决问题的能力;(难点)3.通过贴近学生生活的素材,激发学生的学习兴趣,增强自信心.一、情境导入学校组织各班开展“阳光体育”活动,某班体育委员第一次到商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每根跳绳各多少元?二、合作探究探究点:列二元一次方程组解决较复杂问题的应用题【类型一】行程问题(2015·攀枝花期末)雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,求出小汽车和客车的平均速度.解析:设小汽车的速度为xkm/h,客车的速度为ykm/h,根据客车与小汽车的路程之和等于总路程,相遇时,小汽车比客车多行驶70千米,列出方程组即可.解:设小汽车和客车的平均速度分别为x千米/时和y千米/时,由题意得:解得答:小汽车的速度为98km/h,客车的速度为70km/h.方法总结:此题考查了二元一次方程组的应用,关键是读懂题意,找出题目中的等量关系,列出方程组解答即可.【类型二】购物问题某超市为“开业三周年”举行了店庆活动.对A、B两种商品进行打折销售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.而店庆期间,购买50件A商品和50件B商品仅需960元,这比不打折少花多少钱?解析:通过打折前的两个等量关系列方程,从而求出打折前的A、B商品的单价.进而算出打折前购买商品所花的钱数,再与打折后所花的钱数相比较,就求出了少花的钱数.
解:设打折前A商品的单价为x元,B商品的单价为y元,根据题意,得解得打折前购买50件A商品和50件B商品共需16×50+4×50=1000(元).∴打折后少花1000-960=40(元).答:打折后少花40元.方法总结:设未知数时可以直接设未知数,当直接设未知数不方便求解或列出的方程组较复杂时,也可以间接设未知数.要注意的是,间接设未知数时求得的解还需继续计算才能得出最后所要求的结果.【类型三】分段计费问题某市为提倡居民节约用水,规定每三口之家每月用水量不得超过20吨,超过部分加价收费.已知小亮家有三口人,今年4月份用水24吨,交水费46元;5月份用水29吨,交水费58.5元,你能知道该市在限定量以内的水费每吨多少元,超过部分的水费每吨多少元吗?解析:本题等量关系为:4月份限定量以内的水费+超额部分的水费=46元;5月份限定量以内的水费+超额部分的水费=58.5元.根据这两个等量关系列出方程组求出答案.解:设三口之家限定量以内的水费为每吨x元,超过部分的水费为每吨y元.根据题意,得解得答:该市对三口之家限定量以内的水费每吨1.8元,超过部分的水费每吨2.5元.方法总结:一般情况下,分段计费问题的等量关系为:各段内的费用之和为总费用.【类型四】方案问题将一摞笔记本分给若干个同学,每个同学分6本,则剩下9本;每个同学分8本,又差了3本,问共有多少本笔记本、多少个同学?解析:本题中2个等量关系为:笔记本的本数-同学的个数×6=9,同学的个数×8-3=笔记本的本数.根据这两个等量关系可列出方程组.解:设共有笔记本x本,同学y个.根据题意,得解得答:共有45本笔记本,6个同学.方法总结:在方案问题中,要抓住其中不变的量找等量关系,列方程组.【类型五】图表信息题如图所示,小强和小红一起搭积木,小强所搭的小塔高度为23cm,小红所搭的小树高度为22cm,设每块A型积木的高为xcm,每块B型积木高ycm,请求出x和y的值.解析:小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,根据这两个等量关系列出方程组,再求解.解:根据题意,得解得方法总结:解题关键是看清图形的意思,找出等量关系列方程组求解.
三、板书设计列方程(组)解应用题是同学们学习中的难点,在教学中注意引导学生如何审题,如何找出解决问题的等量关系.本节课的内容紧密联系实际生活,体现了数学的应用价值,让学生积极参与,提高学习的积极性。