四川省内江市2021-2022学年高一数学(理)下学期期末检测试题(PDF版附答案)
pdf
2022-08-26 11:00:04
7页
内江市2021~2022学年度第二学期高一期末检测题数学(理科)本试卷共4页,全卷满分150分,考试时间120分钟。注意事项:1.答题前,考生务必将自己的姓名、考号、班级用签字笔填写在答题卡相应位置.2.选择题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案。不能答在试题卷上。3.非选择题用签字笔将答案直接答在答题卡相应位置上。4.考试结束后,监考人员将答题卡收回。一、选择题:(本大题共12小题,每小题5分,共60分.在每小题的四个选项中只有一个是正确的,把正确选项的代号填涂在答题卡的指定位置上.)1.cos80°sin40°+cos40°sin80°=槡3槡3A.cos40°B.-sin40°C.-D.22→→→→,则→→2.已知a=(2,1),b=(x,2),若a⊥b|3a-b|=A.50B.5槡2C.槡5D.53.已知{an}为等差数列,且2a3+a6=6,则a4=A.2B.3C.12D.不能确定4.若a>b>c,则1111A.<B.a-b>b-cC.<D.ac<bcaba-cb-cπ,35.△ABC的内角A、B、C所对的边分别为a、b、c,若acosB=bsinA,C=c=,则b=32A.槡6B.3槡2C.3槡2+槡6D.3槡3-322422}中,π6.在等比数列{ana1>0,a3·a11=,则tana7=9槡3A.±槡3B.-槡3C.槡3D.3}是等比数列,且a8+a717.已知数列{ana1=1,=27,则{-}的前n项和为a5+a4ann23131n(-3)-1A.B.(-1)C.[(-)-1]D.nn3-123434S3S58.已知等差数列{an}的前n项和为Sn,若S1+2,+4,+6成等比数列,则公比为35A.槡2B.-槡2C.±1D.1高一数学(理科)试卷第1页(共4页)\n2229.△ABC中,sinA+cosB-cosC-槡3sinAsinC=0,AB=3,则AC的最小值为33槡3A.B.C.3槡3D.槡322π)π10.已知2槡3cosα-3cos(α-=1,则sin(2α+)=66112槡22槡2A.-B.C.-D.3333→→11.四边形ABCD中,AB=4,∠A=∠B=60°,∠D=150°,则DA·DC的最小值为A.槡3B.-槡3C.3D.-3111)(112.已知正实数a、b满足+=m,若(a+b+)的最小值为4,则实数m的取值abba范围是A.{2}B.[2,+∞)C.(0,2]D.(0,+∞)二、填空题:(本大题共4小题,每小题5分,共20分.)25π2π13.sin-sin=.1212n14.已知数列{an}的前n项和Sn=3+2019,则{an}的通项公式为.→15.已知点A(0,1),B(1,-1),P是函数f(x)=cosx,x∈[0,π]图象上的动点,若OP=→→λOA+μOB,则2μ-λ的最大值为.316.已知△ABC的内角A、B、C所对的边分别为a、b、c,若c=4,cosA+cosB=cosC=,则5△ABC的周长为.三、解答题:(本大题共6小题,共70分.解答应写出必要的文字说明、推演步骤.)17.(本小题满分10分)已知4,求:0<α<π,0<β<π,且tanα=-7,cosβ=5(1)tan(α+β);(2)α+β.高一数学(理科)试卷第2页(共4页)\n18.(本小题满分12分)→→xx→→→已知a=(1,槡3),b=(sin,cos),函数f(x)=(a+b)·b.22(1)求f(x)的最小正周期;(2)已知△ABC的内角A、B、C所对的边分别为a、b、c,若a、b、c成等比数列,f(B)为函数f(x)的最大值,试判断△ABC的形状.19.(本小题满分12分)已知等比数列{an}的前n项和为Sn,且a3=4,S3=3a1.(1)求{an}的通项公式;(2)若{an}的前3项按某种顺序重新排列后是递增等差数列{bn}的第八、九、十项,求{bn}的前n项和Tn的最小值.20.(本小题满分12分)已知数列{1an}的前n项和为Sn,且4Sn=(2n+1)an+.2(1)求{an}的通项公式;1}的前2(2)设数列{n项和为Tn,若Tn<2t-3t对任意n∈N恒成立,求实数t的取anan+1值范围.高一数学(理科)试卷第3页(共4页)\n21.(本小题满分12分)已知2→→△ABC的内角A、B、C所对的边分别为a、b、c,△ABC的面积为S,若a+2AB·AC=4S.(π1)求证:A=;2(3222)若b=1,P为△ABC内一点,且∠APB=π,求PB+PC的取值范围.422.(本小题满分12分)已知数列{an}满足:a1=-1,an+an+1=2n-1(n∈N).(1)(ⅰ)直接写出a2,a3的值;(ⅱ)求{an}的通项公式;n(2)求数列{3an}的前2n项和S2n.高一数学(理科)试卷第4页(共4页)\n内江市2021~2022学年度第二学期高一期末检测题数学(理科)参考答案及评分意见一、选择题:(本大题共12小题,每小题5分,共60分.)1.D2.B3.A4.C5.A6.C7.B8.D9.A10.B11.D12.B二、填空题:(本大题共4小题,每小题5分,共20分.)槡32022,n=113.14.an=15.π+116.102{2·3n-1,n≥2三、解答题:(本大题共6小题,共70分.)2317.解:(1)因为0<β<π,所以sinβ=槡1-cosβ=5所以sinβ3tanβ==!!!!!!!!!!!!!!!!!!!!!!!!!!2分cosβ43-7+所以tanα+tanβ4tan(α+β)===-1!!!!!!!!!!!!5分1-tanαtanβ31-(-7)×4π(2)因为0<β<π,且cosβ>0,所以0<β<!!!!!!!!!!!!!!!!7分2所以3π0<α+β<!!!!!!!!!!!!!!!!!!!!!!!!!!!8分2所以3πα+β=!!!!!!!!!!!!!!!!!!!!!!!!!!!!10分4→·→→2xxxπ18.解:(1)f(x)=ab+b=sin+槡3cos+1=2sin(+)+1!!!!!!!!3分2223所以f(x)的最小正周期为4π!!!!!!!!!!!!!!!!!!!!!!5分(22)a、b、c成等比数列b=ac!!!!!!!!!!!!!!!!!!!!!!6分Bππ,5π)BπππB∈(0,π)+∈(+=B=!!!!!!!!!!!!8分23362323由余弦定理得22222b=a+c-2accosB=a+c-ac!!!!!!!!!!!!!!9分所以222ac=a+c-ac(a-c)=0a=c!!!!!!!!!!!!!!!!!10分所以△ABC为等边三角形!!!!!!!!!!!!!!!!!!!!!!!!12分19.解:(1)设{an}的公比为q2由S3=3a1得a1+a2+a3=3a1q+q-2=0q=1或-2!!!!!!!!!!3分当q=1时,an=4!!!!!!!!!!!!!!!!!!!!!!!!!!!!4分n-3n-1当q=-2时,an=4·(-2)=(-2)!!!!!!!!!!!!!!!!!5分所以n-1an=4或an=(-2)!!!!!!!!!!!!!!!!!!!!!!!6分n-1(2)由于{bn}为递增数列,所以an=(-2)!!!!!!!!!!!!!!!!7分所以{an}的前3项为1、-2、4,所以b8=-2,b9=1,b10=4!!!!!!!!!!9分所以{bn}的公差为3高一数学(理科)试题答案第1页(共3页)\n8×7由于b8<0,b9>0,所以(Tn)min=T8=8×(-2)+×(-3)=-100!!!!12分2120.解:(1)4Sn=(2n+1)an+①24Sn-1=(2n-1)an-1(n≥2)②①-②得4an=(2n+1)an-(2n-1)an-1(n≥2)!!!!!!!!!!!!!!2分(2n-3)an=(2n-1)an-1(n≥2)anan-1(an=n≥2){}是常数列!!!!!!!!!!!!!!!!4分2n-12n-32n-111a11an1又4S1=3a1+a1==,所以=,!!!!!!!!!!5分222×1-122n-121所以an=n-!!!!!!!!!!!!!!!!!!!!!!!!!!!!!6分2(11112)==-!!!!!!!!!!!!!!7分anan+1(n-1)(n+1)n-1n+12222111111Tn=-+-+…+-133511n-n+2222221=2-!!!!!!!!!!!!!!!!!!!!!!!!!!!!9分1n+2因为Tn关于n单增,且n→+∞时,Tn→2!!!!!!!!!!!!!!!!!10分所以212t-3t≥2t≥2或t≤-!!!!!!!!!!!!!!!!!!!!11分2所以1t的取值范围是(-∞,-]∪[2,+∞)!!!!!!!!!!!!!!!12分22→→22221.解:(1)a+2AB·AC=4Sa+2bccosA=2bcsinAb+c=2bcsinA!!!!!!!2分因为22b+c≥2bc,所以2bcsinA≥2bcsinA≥1(当且仅当b=c时等号成立)!!!4分又sinA≤1,所以sinA=1!!!!!!!!!!!!!!!!!!!!!!!!!5分因为π0<A<π,所以A=!!!!!!!!!!!!!!!!!!!!!!!!6分2π(2)由(1)知c=b=1,所以∠ABC=∠ACB=!!!!!!!!!!!!!!!7分4令ππ∠PAB=θ,则∠PBA=-θ,∠PAC=-θ42PAPBAB在△PAB中,由==得sin∠PBAsin∠PABsin∠APBPAPB1π==PA=槡2sin(-θ),PB=槡2sinθ!!!!!!!!!8分πsinθ3π4sin(-θ)sin44在222△PAC中,由PC=PA+AC-2PA·ACcos∠PAC得22π2PC=PA+1-2PAcos(-θ)=PA+1-2PAsinθ!!!!!!!!!!!!!9分2高一数学(理科)试题答案第2页(共3页)\n2222(ππ所以PB+PC=2sinθ+2sin-θ)+1-2槡2sin(-θ)sinθ44π)=4-2槡2sin(2θ+!!!!!!!!!!!!!!!!!!!10分4π0<θ<由2得π0<θ<{ππ40<-θ<44所以ππ3ππ2π2θ+∈(,)sin(2θ+)∈(槡,1]4-2槡2sin(2θ+)∈[4-2槡2,2).444424所以22PB+PC的取值范围是[4-2槡2,2)!!!!!!!!!!!!!!!!!12分22.解:(ⅰ)a2=2,a3=1!!!!!!!!!!!!!!!!!!!!!!!!!!!2分(ⅱ)an+an+1=2n-1①an+1+an+2=2n+1②②-①得an+2-an=2!!!!!!!!!!!!!!!!!!!!!!!!!!3分所以a1,a3,a5,…和a2,a4,a6,…均是以2为公差的等差数列n+1所以,当n为奇数时,an=a1+(-1)×2=n-2!!!!!!!!!!!!!4分2当nn为偶数时,an=a2+(-1)×2=n!!!!!!!!!!!!!!!!5分2所以n-2,n为奇数an={为偶数!!!!!!!!!!!!!!!!!!!!!!!!分n,n6(2342n-22n-12n2)S2n=-1×3+2×3+1×3+4×3+…+(2n-2)·3+(2n-3)·3+2n·334562n2n+12n+29S2n=-1×3+2×3+1×3+4×3+…+(2n-2)·3+(2n-3)·3+2n·3!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!8分两式相减得342n)2n+12n+2-8S2n=15+2(3+3+…+3-(2n-3)·3-2n·332n·3-332n+12n+2=15+2×-(2n-3)·3-2n·31-32n+1=-12+(4-8n)·3!!!!!!!!!!!!!!!!!!!!!10分2n+1所以3+(2n-1)·3S2n=!!!!!!!!!!!!!!!!!!!!!!12分2高一数学(理科)试题答案第3页(共3页)