初中数学 人教版(2012) 8上:14.1.4 第3课时 整式的除法 教案
docx
2022-12-17 15:48:22
4页
第3课时整式的除法教学目标1.知识与技能了解整式的除法的运算性质,并会用其解决实际问题.2.过程与方法经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.3.情感、态度与价值观感受数学法则、公式的简洁美、和谐美.重、难点与关关键1.重点:整式的除法法则.2.难点:整式的除法法则的推导.3.关键:采用数学类比的方法,引入整式的除法法则.教学方法采用“问题解决”教学方法.教学过程一、情境导入【情境引入】问题:一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的数码照片?你是如何计算的?【教师活动】组织学生独立思考完成,然后先组内交流(4人小组),接着再全班交流,鼓励学生积极探索,应用数学转化的思想化陌生为熟悉,鼓励学生算法多样化,同样强调算理的叙述.【学生活动】完成课本P159“问题”,踊跃发言,利用除法与乘法的互逆关系,求出216÷28=28=256.【继续探究】根据除法的意义填空,并观察计算结果,寻找规律:,(1)77÷72=7();(2)1012÷107=10();(3)x7÷x3=x().【归纳法则】一般地,我们有am÷an=am-n(a≠0,m,n都是正整数,m>n).文字叙述:同底数的幂相除,底数不变,指数相减.【教师活动】组织学生讨论为什么规定a≠0?二、应用新知根据除法的意义填空,并观察结果的规律:(1)72÷72=();(2)1005÷1005=()(3)an÷an=()(a≠0)观察结论:(1)72÷72=72-2=70;(2)1005÷1005=1005-5=1000;(3)an÷an=an-n=a0(a≠0)规定a0=1(a≠0),文字叙述如下:任何不等于0的数的0次幂都等于1.【法则拓展】一般,我们有am÷an=am-n(a≠0,m,n都是正整数,并且m≥n),即文字叙述为:同底数幂相除,底数不变,指数相减.三、探究1.计算:(1)(x5y)÷x3;(2)(16m2n2)÷(2m2n);(3)(x4y2z)÷(3x2y)【学生活动】开始计算,然后总结归纳,上台演示,引入课题.Www.12999.com【归纳法则】,单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.巩固练习1.(-4a2b)2÷(2ab2)2.-16(x3y4)3÷(-x4y5)2;Www.12999.com3.(2xy)2·(-x5y3z2)÷(-2x3y2z)4;4.18xy2÷(-3xy)-4x2y÷(-2xy).提问:“(6xy+8y)÷(2y)”如何计算?相互讨论.计算:(1)(x3y2+4xy)÷x(2)(xy3-2xy)÷(xy)完成计算并讨论多项式除以单项式的法则:多项式与单项式相除可以用分配律将它转化为单项式与单项式相除,再利用单项式与单项式相除的法则进行计算.多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.四、课堂总结,发展潜能教师提问式总结:1.同底数幂的除法法则2.单项式除以单项式的除法法则3.多项式除以单项式的除法法则五、布置作业,专题突破板书设计,整式的除法1、同底数幂的除法法则例:am÷an=am-n练习:(a≠0,m,n都是正整数,m>n)2.单项式除以单项式的除法法则3.多项式除以单项式的除法法则