当前位置: 首页 > 初中 > 数学 > 华师大版八下数学17.2函数的图象2函数的图象教案

华师大版八下数学17.2函数的图象2函数的图象教案

docx 2022-02-20 18:00:06 3页
剩余1页未读,查看更多需下载
2.函数的图象1.理解函数图象的意义以及会通过函数关系式画出函数图象;(重点)2.能够结合实际情境,从函数图象中获取信息并处理信息.(难点)一、情境导入在太阳和月球引力的影响下,海水定时涨落的现象称为潮汐.如图是我国某港某天0时到24时的实时潮汐图.图中的平滑曲线,如实记录了当天每一时刻的潮位,揭示了这一天里潮位y(m)与时间t(h)之间的函数关系.本节课我们就研究函数图象.二、合作探究探究点一:画函数图象在下列式子中,对于x的每一个确定的值,y有唯一的对应值,即y是x的函数,画出函数y=x+0.5的图象:解析:利用题目所给的关系式,根据自变量和函数的关系列出表格,找到它们的有序数对,建立平面直角坐标系,在坐标中描出对应点的坐标,然后用平滑的曲线连接,问题可解.解:列表:x…-1012…y…-0.50.51.52.5…描点、连线,图象如图所示.方法总结:由函数表达式画函数图象,一般按下列步骤进行:①列表:根据函数的关系式列出函数对应值表;②描点:用这些对应值作为点的坐标,在坐标平面内描点;③连线:把这些点用平滑曲线连接起来,可得函数图象.探究点二:函数的图象 【类型一】函数图象的意义下列各图给出了变量x与y之间的对应关系,其中y是x的函数的是(  )   解析:∵对于x的每一个取值,y都有唯一确定的值与其对应,选项A对于x的每一个取值,y都有两个值,故A错误;选项B对于x的每一个取值,y都有两个值,故B错误;选项C对于x的每一个取值,y都有两个值,故C错误;选项D对于x的每一个取值,y都有唯一确定的值,故D正确.故选D.方法总结:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.【类型二】判断函数的大致图象一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是(  )D.ABCD解析:∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加.∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓.∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选:A.方法总结:本题考查了函数的图象的知识,解题的关键是能够将实际问题与函数的图象有机的结合起来.探究点三:从函数图象上获取信息如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系如图,请根据图象回答下列问题: (1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间?(3)汽车到达离出发地最远的地方后返回,则返回用了多长时间?(4)汽车在出发和返回的过程中的平均速度分别是多少?解析:根据图象进行分析即可.解:(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米);(2)由横坐标看出,2-1.5=0.5(小时),汽车在行驶途中停留了0.5小时;(3)由横坐标看出4.5-3=1.5(小时),返回用了1.5小时.(4)由纵坐标看出汽车到达D点时的路程是120千米,由横坐标看出到达D点时的时间是3小时,由此算出平均速度120÷3=40(km/h);汽车返回家用了1.5小时,由此算出平均速度是120÷1.5=80(km/h);方法总结:解读图象反映的信息,关键是理解横轴和纵轴表示的实际意义,解决问题的过程中体现了数形结合思想.三、板书设计1.函数图象的认识及画法 2.函数图象的意义3.函数图象的应用本课设计的学习内容都是学生所熟知的事情,情景导入是由实例入手,这些内容有利于学生联系实际,主动进行观察、实验、猜测、验证、推理与交流等数学活动.通过一些现实生活中用图象来反映的问题实例,让学生经历将实际问题抽象为数学问题的过程.教学生如何观察分析图象,学会观察图象的一般步骤,利用问题串的形式引导学生逐步深入获得图象所传达的信息,逐步熟悉图象语言.

相关推荐