当前位置: 首页 > 初中 > 数学 > 北师大版九下第1章直角三角形的边角关系1锐角三角函数第1课时正切教案

北师大版九下第1章直角三角形的边角关系1锐角三角函数第1课时正切教案

doc 2022-02-27 16:00:02 4页
剩余2页未读,查看更多需下载
正切教学目标【知识与技能】1.了解锐角三角函数的概念,能够正确应用tanA表示直角三角形中两边的比.2.理解坡度的概念,并能够计算坡面的坡度.【过程与方法】通过锐角三角函数的学习进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的应用.【情感、态度与价值观】1.通过学习培养学生的合作意识.2.通过探究提高学生学习数学的兴趣.重点难点【重点】锐角三角函数的概念,坡比的概念.【难点】锐角三角函数概念的理解.教学过程一、创设情境,导入新知师:高架桥的起始一段有倾斜的部分,这个坡面的坡度或者说倾斜程度是怎样度量的呢?学生思考.二、共同探究,获取新知1.正切的概念.教师多媒体课件出示:在下图中,有两个直角三角形,直角边AC与A1C1表示水平面,斜边AB与A1B1分别表示两个不同的坡面,坡面AB和A1B1哪个更陡?你是怎样判断的?生:A1B1更陡.师:你是怎样判断的呢?生甲:这两个中同样是100的一段,对应的高度A1B1上升得多.生乙:(2)倾斜得厉害.教师多媒体课件出示:4 师:这个图里,你能判断坡面AB和A1B1哪个更陡吗?学生观察后回答:A1B1更陡.师:为什么?生:……教师多媒体课件出示:如图,在锐角A的一边上任取一点B,自点B向另一边作垂线,垂足为C,得到Rt△ABC;再任取一点B1,自点B1向另一边作垂线,垂足为C1,得到另一个Rt△AB1C1……这样,我们可以得到无数个直角三角形,这些直角三角形都相似.在这些直角三角形中,锐角A的对边与邻边之比、、……究竟有怎样的关系?教师读题后学生思考.生:锐角A的这些对边与邻边之比都是相等的.师:对,在这些直角三角形中,当锐角A的大小确定后,无论直角三角形的大小怎样变化,∠A的对边与邻边的比值总是一个定值.教师边操作边讲解:在这个直角三角形ABC中,我们把锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA===.2.坡度、坡角的概念.教师边作图边讲解:正切经常用来描述坡面的坡度.坡面的铅直高度h和水平长度l的比叫做坡面的坡度(或坡比),记作i,即i=,坡度通常写成h∶l的形式.坡面与水平面的夹角叫做坡角(或称倾斜角),记作α,于是有i==tanα.你能得到坡度与坡角之间的关系吗?生:能.坡度越大,坡角越大,坡面就越陡.师:很好!4 三、举例应用,巩固新知教师多媒体课件出示:【例1】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,求tanA和tanB.tanA===.师:你能计算出∠A和∠B的正切吗?学生思考后回答:能.师:怎样计算?教师找一生回答.生:tanA==,tanB==师:你回答得很好!现在请同学们看课本第114页练习的第3题.学生读题后,教师找两生板演,其余同学在下面做,然后集体订正.解:AC===≈199.64,∴引桥的坡度为:tan∠BAC===≈0.06.四、练习新知1.师:下面让我们一起来看几道习题.教师板书习题:(1)为测量如图所示的上山坡道的倾斜度,小明测得数据如图所示,则该坡道倾斜角α的正切值是()A.B.4C.D.【答案】C(2)晓敏由地面沿坡度i=1∶2的坡面向上前进了10m,此时她距离地面的高度为()A.5mB.4mC.2mD.m【答案】C(3)在Rt△ABC中,∠C=90°,BC=4,AC=6,则tanA的值为.【答案】(4)在△ABC中,∠C=90°,BC=6,tanA=,则AC的长是.【答案】9五、课堂小结4 师:本节课你又学习了什么内容?学生回答.师:你还有什么疑问?学生提问,教师解答.教学反思本节课采用问题引入法,从教材探究性问题梯子的倾斜度入手,让学生主动参与学习活动.用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图、找边角、计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后探究:三角函数与直角三角形的边、角有什么关系?三角函数与三角形的形状有关系吗?整节课都在紧张而愉快的气氛中进行.学生非常活跃,大部分人都能积极动脑、积极参与.教学中,我一直比较关注学生的情感态度,对那此积极动脑、热情参与的同学都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证教学活动的有效性.4

相关推荐