2022春九年级数学下学期期末达标检测(冀教版)
doc
2022-02-27 18:00:08
13页
期末达标检测卷一、选择题(每题3分,共30分)1.下列结论正确的是( )A.长度相等的两条弧是等弧B.半圆是弧C.相等的圆心角所对的弧相等D.一条弦所对的所有的圆周角相等2.如图,在半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为( )A.6B.8C.10D.123.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C作与边AB相切的动圆,与CB,CA分别相交于点E,F,则线段EF长度的最小值是( )A.4B.4.75C.5D.4.84.如图,已知BC为⊙O的直径,AD⊥BC,垂足为D,=,∠ABF=30°,则∠BAD等于( )A.30°B.45°C.60°D.22.5°5.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( )A.B.C.D.6.已知圆的半径为6.5cm,圆心到直线l的距离为4.5cm,那么这条直线和这个圆的公共点的个数是( )A.0B.1C.2D.无法确定13
7.在一次质检抽测中,随机抽取某摊位20袋食盐,测得各袋的质量分别为(单位:g):492496494495498497501502504496497503506508507492496500501499根据以上抽测结果,估计任买一袋该摊位的食盐,质量在497.5g~501.5g之间的概率为( )A.B.C.D.8.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( )A.60°B.90°C.120°D.180°9.如图,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动地在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径与x轴围成的面积为( )A.+B.+1C.π+1D.π+10.如图,抛物线过点A(2,0),B(6,0),C,平行于x轴的直线CD交抛物线于点C,D,以AB为直径的圆交直线CD于点E,F,则CE+FD的值是( )A.2B.4C.3D.613
二、填空题(每题3分,共24分)11.如图,AB,CD为⊙O内两条相交的弦,交点为E,且AB=CD.则以下结论:①=;②AD∥BC;③AE∶BE=1∶2;④△ADE∽△BCE.其中不一定成立的是________.(填序号)12.如图,在△ABC中,AC=BC=4,∠C=90°,O是AB的中点,⊙O与AC,BC分别相切于点D,E,点F是⊙O与AB的一个交点,连接DF并延长交CB的延长线于点G,则BG的长是________.13.一个口袋中有4个黑球和若干个白球,在不允许将球倒出来数的前提下,要估算白球的个数,小明从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……不断重复上述过程.他共摸了100次,其中20次摸到黑球,根据上述数据,小明可估计口袋中的白球有________个.14.已知圆锥的侧面展开图的圆心角是180°,底面积为15cm2,则圆锥的侧面积为________cm2.15.如图,在菱形ABCD中,AB=1,∠BAD=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为__________.16.从半径为9cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为________.17.淘淘和丽丽是非常要好的九年级学生,在物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是__________.13
18.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼.若在这200条鱼中有5条鱼是有记号的,则可估计鱼塘中有鱼________________条.三、解答题(19~21题每题10分,其余每题12分,共66分)19.如图,点A,B,C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB;(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.20.某射击运动员在同一条件下的射击成绩记录如下:射击次数10203040506080100射中8环以上的频数617253139496580射中8环以上的频率(1)计算表中相应的频率;(精确到0.01)(2)估计这名运动员射击一次时“射中8环以上”的概率.(精确到0.1)21.如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.13
(1)求证:EF是⊙O的切线;(2)求证:AC2=AD·AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.22.图①和图②中,优弧AB所在⊙O的半径为2,AB=2.点P为优弧AB上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是________,当BP经过点O时,∠ABA′=________;(2)当BA′与⊙O相切时,如图②,求折痕BP的长;(3)若线段BA′与优弧AB只有一个公共点B,设∠ABP=α,确定α的取值范围.23.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,413
(背面完全相同),现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率;(2)你认为这个游戏规则对双方公平吗?说说你的理由.24.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①所示),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②所示),设另一交点为E,连接AE,OC,若AE∥OC.①AE与OD的大小有什么关系?为什么?②求∠ODC的度数. 13
答案一、1.B 点拨:在同圆或等圆中,完全重合的弧才是等弧,长度相等的弧不一定是等弧,故A错误;半圆是弧,B正确;在同圆或等圆中,相等的圆心角所对的弧才相等,故C错误;弦为直径时所对的圆周角都相等,弦不是直径时,顶点在优弧与劣弧上的圆周角不相等,故D错误.2.A 3.D 4.A 5.C 6.C 7.B 8.C9.C 点拨:如图,点A运动的路径与x轴围成的面积为S1+S2+S3+S4+S5=+++2×=π+1.故选C.10.B 点拨:如图,∵点A,B的坐标分别是(2,0),(6,0),∴AB的中点M的坐标为(4,0),且点M是圆心,作MN⊥CD于点N,则EN=FN,又由抛物线的对称性可知CN=DN,∴CE=DF.连接EM.在Rt△EMN中,EN====1.又CN=4-1=3,∴CE=CN-EN=3-1=2,∴CE+DF=2+2=4.二、11.③ 12.2-2 13.16 14.3015.+- 点拨:如图,连接D′C,BC′,BD′,易知A,D′,C在同一直线上,A,B,C′在同一直线上.过D′作D′E⊥AB于E,过C作CH⊥AC′于H.由旋转可知,S阴影=13
S扇形CAC′-2S△D′FC.在Rt△AD′E中,∠D′AE=30°,AD′=1,∴D′E=,AE=.在Rt△BD′E中,BE=1-,D′B2=2+2=2-.可证∠D′FB=∠CFC′=90°,△D′BF是等腰直角三角形,∴D′F2=,∴BF=D′F==,∴CF=1-=.在Rt△CBH中,∠CBH=60°,BC=1,∴BH=,CH=.∴AH=.∴AC2=3.∴S△D′FC=×D′F×CF=××=,S扇形CAC′=×AC2=×3=.∴S阴影=S扇形CAC′-2×S△D′FC=-2×=+-.16.3cm 17. 18.1200三、19.(1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC.∴∠BAC=∠OAC,即AC平分∠OAB.(2)解:∵OE⊥AB,13
∴AE=BE=AB=1.又∵∠AOE=30°,∠OEA=90°,∴∠OAE=60°.∴∠EAP=∠OAE=30°.∵tan∠EAP=,∴PE=AE·tan∠EAP=1×=.∴PE的长是.20.解:(1)表中的频率依次为0.60,0.85,0.83,0.78,0.78,0.82,0.81,0.80.(2)可以看出:随着射击次数的增多,运动员射中8环以上的频率稳定在0.8左右,从而估计他射击一次时,“射中8环以上”的概率为0.8.21.(1)证明:连接OC.∵AD⊥EF,∴∠ADC=90°.∴∠ACD+∠CAD=90°.∵OC=OA,∴∠ACO=∠CAO.∵∠DAC=∠BAC,∴∠ACD+∠ACO=90°,即∠OCD=90°.∴EF是⊙O的切线.(2)证明:连接BC.∵AB是⊙O的直径,∴∠ACB=90°.∵AD⊥EF,∴∠ADC=90°=∠ACB.∵∠DAC=∠BAC,∴△ACD∽△ABC.∴=,即AC2=AB·AD.(3)解:∵CD是⊙O的切线,13
∴∠OCD=90°,即∠ACD+∠ACO=90°.∵∠ACD=30°,∴∠OCA=60°.∵OC=OA,∴△ACO是等边三角形.∴AC=OC=2,∠AOC=60°.在Rt△ADC中,∵∠ACD=30°,∴AD=1,CD=.∴S阴影=S梯形OCDA-S扇形OCA=(1+2)×-=-.22.解:(1)1;60°(2)作OC⊥AB于点C,连接OB,如图所示.∵BA′与⊙O相切,∴∠OBA′=90°.在Rt△OBC中,OB=2,OC=1,∴sin∠OBC==.∴∠OBC=30°.∴∠ABP=∠ABA′=(∠OBA′+∠OBC)=60°.∴∠OBP=30°.作OD⊥BP于点D,则BP=2BD.∵BD=OB·cos30°=,∴BP=2.(3)∵点P,A不重合,∴α>0°.13
由(1)得,当α增大到30°时,点A′在优弧AB上,∴当0°<α<30°时,点A′在⊙O内,线段BA′与优弧AB只有一个公共点B.由(2)知,α增大到60°时,BA′与⊙O相切,即线段BA′与优弧AB只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但点P,B不重合,∴∠OBP<90°.∵α=∠OBA+∠OBP,∠OBA=30°,∴α<120°.∴当60°≤α<120°时,线段BA′与优弧AB只有一个公共点B.综上所述,α的取值范围是0°<α<30°或60°≤α<120°.23.解:(1)列表如下:总共有9种结果,每种结果出现的可能性相同,而两数和为6的结果有3种,因此P(两数和为6)=.(2)这个游戏规则对双方不公平.理由:因为P(和为奇数)=,P(和为偶数)=,而≠,所以这个游戏规则对双方是不公平的.24.解:(1)如图①所示,连接OC,则∠OCD=90°.∵OC=OA,CD=OA,∴OC=CD.∴∠ODC=∠COD.∵∠ODC+∠COD=90°,∴∠ODC=45°.(2)如图②所示,连接OE.13
∵CD=OA,∴CD=OC=OE=OA.∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠1=x,则∠2=∠3=∠4=x.∴∠AOE=∠OCD=180°-2x.①AE=OD,理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS).∴AE=OD.②∵OE=OC,∠6=∠1+∠2=2x,∴∠5=∠6=2x,∵AE∥OC,∴∠4+∠5+∠6=180°,即x+2x+2x=180°.∴x=36°.13
∴∠ODC=36°.13